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Clustering Analysis

Day 2 : February 26, 2021



Hierarchical Clustering
Methods



Hierarchical Clustering
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- Agglomerative: Start with singleton clusters, continuously merge two clusters
at a time to build a bottom-up hierarchy of clusters

- Divisive: Start with a huge macro-cluster, split it continuously into two groups,
generating a top-down hierarchy of clusters



Agglomerative Algorithm

O AGNES (AGglomerative NESting) (Kaufmann and Rousseeuw, 1990)
- Use the single-link method and the dissimilarity matrix
- Continuously merge nodes that have the least dissimilarity
- Eventually all nodes belong to the same cluster
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Q Agglomerative clustering varies on different similarity measures among clusters
2 Single link (nearest neighbor) J Average link (group average)
- Complete link (diameter) J Centroid link (centroid similarity)



Single vs. Complete Link

Q Single link (nearest neighbor)

- The similarity between two clusters is the similarity between
their most similar (nearest neighbor) members

J Local similarity-based: Emphasizing more on close regions,
ignoring the overall structure of the cluster

) Capable of clustering non-elliptical shaped group of objects
- Sensitive to noise and outliers
O Complete link (diameter)

- The similarity between two clusters is the similarity between
their most dissimilar members

- Merge two clusters to form one with the smallest diameter
) Nonlocal in behavior, obtaining compact shaped clusters
- Sensitive to outliers
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Average vs. Centroid Links

O Agglomerative clustering with average link °®o —
- Average link: The average distance between an element in one : :X: K g : :}'.:
cluster and an element in the other (i.e., all pairs in two clusters) © o G’Ca: N, - 'Eb: N,
2 Expensive to compute .
0 Agglomerative clustering with centroid link °e"oe o9
1 Centroid link: The distance between the centroids of two clusters 7, °, oot e
0O Group Averaged Agglomerative Clustering (GAAC)
3 Let two clusters C, and C, be merged into C,,,. The new centroid is: Nc +N,e,
a N, is the cardinality of cluster C,, and c, is the centroid of C, Caup = N_+N,

2 The similarity measure for GAAC is the average of their distances
QO Agglomerative clustering with Ward’s criterion

- Ward’s criterion: The increase in the value of the SSE criterion for the clustering

obtained by merging theminto C,UCy: w(C. ,.c. ,)-W (C,c)= —<b_g(c .c,)
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Divisive Algorithm

Q DIANA (Divisive Analysis) (Kaufmann and Rousseeuw,1990)
J Implemented in some statistical analysis packages, e.g., Splus
Q Inverse order of AGNES: Eventually each node forms a cluster on its own
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Q Divisive clustering is a top-down approach
. The process starts at the root with all the points as one cluster

It recursively splits the higher level clusters to build the dendrogram
- Can be considered as a global approach

- More efficient when compared with agglomerative clustering



Divisive Algorithm Discussion

Q Choosing which cluster to split

- Check the sums of squared errors of the clusters and choose the one with the
largest value

Q Splitting criterion: Determining how to split

- One may use Ward'’s criterion to chase for greater reduction in the difference in
the SSE criterion as a result of a split

) For categorical data, Gini-index can be used
Q Handling the noise

) Use a threshold to determine the termination criterion (do not generate clusters
that are too small because they contain mainly noises)



Hierarchical Clustering Extensions

3 Major weaknesses of hierarchical clustering methods
- Can never undo what was done previously
- Do not scale well
2 Time complexity of at least O(n?), where n is the number of total objects
Q Other hierarchical clustering algorithms

- BIRCH (1996): Use CF-tree and incrementally adjust the quality of sub-clusters

- CURE (1998): Represent a cluster using a set of well-scattered representative points

- CHAMELEON (1999): Use graph partitioning methods on the K-nearest neighbor
graph of the data




Density-Based and Grid-
Based Clustering Methods



Density-Based Clustering

Q Clustering based on density (a local cluster criterion), such as density-connected
points
a Major features:
- Discover clusters of arbitrary shape
- Handle noise
J One scan (only examine the local region to justify density)
- Need density parameters as termination condition

Q Several interesting studies:
) DBSCAN: Ester, et al. (KDD’96) To be covered in this lecture
- OPTICS: Ankerst, et al (SIGMOD’99) To be covered in this lecture
- DENCLUE: Hinneburg & D. Keim (KDD’98)
2 CLIQUE: Agrawal, et al. (SIGMOD’98) (also, grid-based) 7o be covered in this lecture




DBSCAN Clustering

O DBSCAN (M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, KDD’96)
) Discovers clusters of arbitrary shape: Density-Based Spatial ‘
[0}
MinPts =5

Clustering of Applications with Noise
Q A density-based notion of cluster

- A cluster is defined as a maximal set of density-connected

points
Q Two parameters:
J Eps: Maximum radius of the neighborhood
J MinPts: Minimum number of points in the
Eps-neighborhood of a point
Q The Eps-neighborhood of a point g:
3 Ng,(q): {p belongs to D | dist(p, q) < Eps}

¢ e Eps=1cm

P— —
@ ; Outlier

7N N Outlier/noise:

Border | : . 0‘ ® notinacluster
@ O :

"‘0. ®" Ccore point: dense

Core | % ° @ neighborhood

Border point: in cluster but
—— neighborhood is not dense



Density-Reachable & Density-Connected

Q Directly density-reachable:

2 A point p is directly density-reachable from a point g w.r.t. " ‘
Eps, MinPts if . MinPts = 5

Q p belongs to N,(q)

O core point condition: [N, (q)| 2 MinPts 4
QO Density-reachable: 9%
- A point p is density-reachable from a point g w.r.t. Eps, ‘P °
MinPts if there is a chain of points p,, ..., p,, P;=q, P, =P

such that p,,, is directly density-reachable from p,

e Eps=1cm

O Density-connected:

J A point p is density-connected to a point g w.r.t. Eps,
MinPts if there is a point o such that both p and g are
density-reachable from o w.r.t. Eps and MinPts




DBSCAN: The Algorithm
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from p, and DBSCAN visits the next point of the database
- Continue the process until all of the points have been
processed
O Computational complexity

- If a spatial index is used, the computational complexity of DBSCAN
is O(nlogn), where n is the number of database objects

- Otherwise, the complexity is O(n?)



DBSCAN is Sensitive to the Parameter Setting

Figure 8. DBScan

MinPts at 4 and Eps at
(a)0.5and (b) 0.4.

(@

Figure 9. DBScan
results for DS2 with
MinPts at 4 and Eps at
(a)5.0, (b) 3.5, and
(c) 3.0.

(a) (b) (c)

Ack. Figures from G. Karypis, E.-H. Han, and V. Kumar, COMPUTER, 32(8), 1999



Recommended Readings

Q M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases. KDD'96

a W. Wang, J. Yang, R. Muntz, STING: A Statistical Information Grid Approach to Spatial
Data Mining, VLDB’97

QO R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic Subspace Clustering
of High Dimensional Data for Data Mining Applications. SIGMOD’98

Q A. Hinneburg and D. A. Keim. An Efficient Approach to Clustering in Large Multimedia
Databases with Noise. KDD’98

O M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering Points to
Identify the Clustering Structure. SIGMOD’99

Q M. Ester. Density-Based Clustering. In (Chapter 5) Aggarwal and Reddy (eds.), Data
Clustering: Algorithms and Applications . CRC Press. 2014

QO W. Cheng, W. Wang, and S. Batista. Grid-based Clustering. In (Chapter 6) Aggarwal
and Reddy (eds.), Data Clustering: Algorithms and Applications. CRC Press. 2014



Clustering Validation
Methods



Clustering Validation

O Major issues on clustering validation and assessment
J Clustering evaluation
4 Evaluating the goodness of the clustering
- Clustering stability

d To understand the sensitivity of the clustering result to various algorithm
parameters, e.g., # of clusters

- Clustering tendency

- Assess the suitability of clustering, i.e., whether the data has any inherent
grouping structure



Measuring Clustering Quality

Q Clustering Evaluation: Evaluating the goodness of clustering results
- No commonly recognized best suitable measure in practice

O Three categorization of measures: External, internal, and relative
- External: Supervised, employ criteria not inherent to the dataset

- Compare a clustering against prior or expert-specified knowledge (i.e., the
ground truth) using certain clustering quality measure

2 Internal: Unsupervised, criteria derived from data itself

- Evaluate the goodness of a clustering by considering how well the clusters are
separated and how compact the clusters are, e.g., silhouette coefficient

) Relative: Directly compare different clusterings, usually those obtained via
different parameter settings for the same algorithm



Relative Measure

O Relative measure: Directly compare different clusterings, usually those obtained via
different parameter settings for the same algorithm

Q Silhouette coefficient as an internal measure: Check cluster cohesion and separation

min

—— . . . . . . SR lloul (xl)— /lm(xl)
- For each point x, its silhouette coefficient s; is: 5 = - )
: i max {£" (X,), p1, (X,)}

where 4,(x,) is the mean distance from x; to points in its own cluster

min

M, (X;) is the mean distance from x; to points in its closest cluster
2 Silhouette coefficient (SC) is the mean values of s; across all the points: SC = 123
2 SCclose to +1 implies good clustering e
d Points are close to their own clusters but far from other clusters
QO Silhouette coefficient as a relative measure: Estimate the # of clusters in the data

SC — 1 Z . Pick the k value that yields the best clustering, i.e., yielding high
" n 27 valuesforSCand SC (1<i<k)



Cluster Stability

Q Clusterings obtained from several datasets sampled from —

the same underlying distribution as D should be similar or “stable” \ @e: °
O Typical approach: ®

- Find good parameter values for a given clustering algorithm
Q Example: Find a good value of k, the correct number of clusters
O A bootstrapping approach to find the best value of k (judged on stability)
) Generate t samples of size n by sampling from D with replacement
J For each sample D, run the same clustering algorithm with k values from 2 to k,,

2 Compare the distance between all pairs of clusterings C,(D;) and C,(D;) via some
distance function

J Compute the expected pairwise distance for each value of k

- The value k* that exhibits the least deviation between the clusterings obtained from
the resampled datasets is the best choice for k since it exhibits the most stability




Number of Cluster

O Empirical method
- #of clusters: k=~ Mfor a dataset of n points (e.g., n = 200, k = 10)
QO Elbow method: Use the turning point in the curve of the sum [ CT 11 ]
of within cluster variance with respect to the # of clusters ‘
Q Cross validation method
- Divide a given data set into m parts
- Use m—1 parts to obtain a clustering model ,
- Use the remaining part to test the quality of the clustering —

- For example, for each point in the test set, find the closest centroid, and use the
sum of squared distance between all points in the test set and the closest centroids
to measure how well the model fits the test set

) Forany k>0, repeat it m times, compare the overall quality measure w.r.t. different
k’s, and find # of clusters that fits the data the best



Clustering Tendency

O Assessing the suitability of clustering .

° Oe <} ° " °
Q (i.e., whether the data has any inherent grouping structure) v B e . L
O Determining clustering tendency or clusterability "esa * g

2 A hard task because there are so many different definitions of clusters
4 E.g., partitioning, hierarchical, density-based, graph-based, etc.
- Even fixing cluster type, still hard to define an appropriate null model for a data set
Q Still, there are some clusterability assessment methods, such as

) Spatial histogram: Contrast the histogram of the data with that generated from
random samples

-1 Distance distribution: Compare the pairwise point distance from the data with
those from the randomly generated samples

) Hopkins Statistic: A sparse sampling test for spatial randomness



Test Clustering Tendency

a Spatial Histogram Approach: Contrast the d-dimensional histogram of the input
dataset D with the histogram generated from random samples

) Dataset D is clusterable if the distributions of two histograms are rather different
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- Do the same for the randomly sampled data
- Compute how much they differ using the Kullback-Leibler (KL) divergence value




Recommended Readings

Q M. J. Zaki and W. Meira, Jr.. Data Mining and Analysis: Fundamental Concepts and
Algorithms. Cambridge University Press, 2014

Q L. Hubert and P. Arabie. Comparing Partitions. Journal of Classification, 2:193-218,
1985

Q A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Printice Hall, 1988

Q M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On Clustering Validation Techniques.
Journal of Intelligent Info. Systems, 17(2-3):107-145, 2001

Q J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 3@ ed. , 2011

O H. Xiong and Z. Li. Clustering Validation Measures. in (Chapter 23) C. Aggarwal and C. K.
Reddy (eds.), Data Clustering: Algorithms and Applications. CRC Press, 2014



