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Clustering Analysis

Day 1: February 25, 2021



What is clustering?



What is clustering?

* The organization of unlabeled data into
similarity groups called clusters.

A cluster is a collection of data items which
are “similar” between them, and “dissimilar”
to data items in other clusters.
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History of clustering

= John Snow, a London physician plotted the
location of cholera deaths on a map during an
outbreak in the 1850s.

= The locations indicated that cases were
clustered around certain intersections where
there were polluted wells -- thus exposing both
the problem and the solution.
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Cluster Analysis

O What is a cluster?
- A cluster is a collection of data objects which are
2 Similar (or related) to one another within the same group (i.e., cluster)
2 Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)
Q Cluster analysis (or clustering, data segmentation, ...)

- Given a set of data points, partition them into a set of groups (i.e.,
clusters) which are as similar as possible

Q Cluster analysis is unsupervised learning (i.e., no predefined classes)
- This contrasts with classification (i.e., supervised learning)

Q Typical ways to use/apply cluster analysis
- As a stand-alone tool to get insight into data distribution, or
) As a preprocessing (or intermediate) step for other algorithms



Reminder!
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Elements of clustering

1. Proximity measure, either
= similarity measure s(x;,x,): large if x;,x, are similar
= dissimilarity(or distance) measure d(x;x;): small if x;x, are similar

= _larged, smalls 3 large s, small d
<) = S
2. Criterion function to evaluate a clustering
B =] Y ‘ ....... "
—) { 0® ® : &
‘. H @ ® .‘ ----- ..5‘
g, @ % o
. . ....... ".:.: ‘ ......
Gl o
good clustering bad clustering

3. Algorithm to compute clustering
= For example, by optimizing the criterion function
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Similarity
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Similarity

Pata exists in a
muitidimensional space

One dimension for
each variable

Standardize dimensions

Measure distance
between points

Look for dense areas




Cluster evaluation

* Intra-cluster cohesion (compactness):

— Cohesion measures how near the data points in a
cluster are to the cluster centroid.

— Sum of squared error (SSE) is a commonly used
measure.

* Inter-cluster separation (isolation):

— Separation means that different cluster centroids
should be far away from one another.

* |n most applications, expert judgments are
still the key



Number of clustering

3 clusters or 2 cluste

* Possible approaches

1. fix the number of clusters to k

2. find the best clustering according to the criterion
function (number of clusters may vary)
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Cluster analysis applications

QO A key intermediate step for other data mining tasks

J Generating a compact summary of data for classification, pattern discovery,
hypothesis generation and testing, etc.

- Outlier detection: Outliers—those “far away” from any cluster
— 20 Data summarization, compression, and reduction

- Ex. Image processing: Vector quantization

Q Collaborative filtering, recommendation systems, or customer segmentation
J Find like-minded users or similar products

O Dynamic trend detection
- Clustering stream data and detecting trends and patterns

O Multimedia data analysis, biological data analysis and social network analysis

2 Ex. Clustering images or video/audio clips, gene/protein sequences, etc.
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Elements and Types of
Clustering



Requirements and Challenges

3 Partitioning criteria

- Single level vs. hierarchical partitioning (often, multi-level hierarchical
partitioning is desirable)

O Separation of clusters

) Exclusive (e.g., one customer belongs to only one region) vs. non-exclusive
(e.g., one document may belong to more than one class)

Q Similarity measure

- Distance-based (e.g., Euclidean, road network, vector) vs. connectivity-
based (e.g., density or contiguity)

3 Clustering space

- Full space (often when low dimensional) vs. subspaces (often in high-
dimensional clustering)



Requirements and Challenges

O Quality

- Ability to deal with different types of attributes: Numerical, categorical,
text, multimedia, networks, and mixture of multiple types

- Discovery of clusters with arbitrary shape

) Ability to deal with noisy data
3 Scalability

- Clustering all the data instead of only on samples

- High dimensionality

- Incremental or stream clustering and insensitivity to input order
QO Constraint-based clustering

- User-given preferences or constraints; domain knowledge; user queries
3 Interpretability and usability
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A Multi-Dimensional Categorization

Q Technique-Centered
- Distance-based methods
- Density-based and grid-based methods
- Probabilistic and generative models
- Leveraging dimensionality reduction methods
- High-dimensional clustering
) Scalable techniques for cluster analysis
Q Data Type-Centered

- Clustering numerical data, categorical data, text data, multimedia data, time-
series data, sequences, stream data, networked data, uncertain data

3a Additional Insight-Centered
- Visual insights, semi-supervised, ensemble-based, validation-based



Typical Clustering Methodologies

Q Distance-based methods

dJ Partitioning algorithms: K-Means, K-Medians, K-Medoids

) Hierarchical algorithms: Agglomerative vs. divisive methods
O Density-based and grid-based methods

d Density-based: Data space is explored at a high-level of granularity and
then post-processing to put together dense regions into an arbitrary shape

J Grid-based: Individual regions of the data space are formed into a grid-like
structure

Q Probabilistic and generative models: Modeling data from a generative process
2 Assume a specific form of the generative model (e.g., mixture of Gaussians)

2 Model parameters are estimated with the Expectation-Maximization (EM)
algorithm (using the available dataset, for a maximum likelihood fit)

J Then estimate the generative probability of the underlying data points



Typical Clustering Methodologies

J High Dimensional Clustering

) Subspace clustering: clustering on various subspaces
J Bottom-up, top-down, correlation-based methods vs. 8-cluster method

) Dimensionality reduction: a vertical form of clustering
J Probabilistic latent semantic indexing (PLSI) then LDA: topic modeling of text data

) Non-negative matrix factorization (NMF) clustering (an example of co-clustering)

) Spectral clustering: use the spectrum of the similarity matrix of the data to perform
dimensionality reduction for clustering in fewer dimensions



Clustering Different Types of Data

d Numerical data
- Most earliest clustering algorithms were designed for numerical data
3 Categorical data (including binary data)
- Discrete data, no natural order (e.g., sex, race, zip-code, and market-basket)
3 Text data: Popular in social media, Web, and social networks
J Features: High-dimensional, sparse, value corresponding to word frequencies
J Methods: Combination of k-means and agglomerative; topic modeling; co-clustering
Q Multimedia data: Image, audio, video (e.g., on Flickr, YouTube)
- Multi-modal (often combined with text data)
J Contextual: Containing both behavioral and contextual attributes



Clustering Different Types of Data

] Time series data: Sensor data, stock markets, temporal tracking,
forecasting, etc.

] Sequence data: Weblogs, biological sequences, system command sequences

] Stream data: Real-time data



User Insights and Clustering

Q Visual insights: One picture is worth a thousand words
- Human eyes: High-speed processor linking with a rich knowledge-base
- A human can provide intuitive insights; HD-eye: visualizing HD clusters
O Semi-supervised insights: Passing user’s insights or intention to system

- User-seeding: A user provides a number of labeled examples, approximately
representing categories of interest

O Multi-view and ensemble-based insights

- Multi-view clustering: Multiple clusterings represent different perspectives

- Multiple clustering results can be ensembled to provide a more robust solution
3 Validation-based insights: Evaluation of the quality of clusters generated

- May use case studies, specific measures, or pre-existing labels



Clustering techniques

Hierarchical
Divisive Agglomerative
Centroid

Model Based

Clustering

Partitional

Bayesian

Decision Based Nonparametric

Graph Theoretic Spectral



Recommended readings

O Major Reference Books on Cluster Analysis

- Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques.
Morgan Kaufmann, 3@ ed. , 2011 (Chapters 10 & 11)

- Charu Aggarwal and Chandran K. Reddy (eds.). Data Clustering: Algorithms and
Applications. CRC Press, 2014

- Mohammed J. Zaki and Wagner Meira, Jr.. Data Mining and Analysis: Fundamental
Concepts and Algorithms. Cambridge University Press, 2014

O Reference paper for this lecture

3 Charu Aggarwal. An Introduction to Clustering Analysis. in Aggarwal and Reddy (eds.).
Data Clustering: Algorithms and Applications (Chapter 1). CRC Press, 2014



Similarity Measures for
Clustering



Good clustering

QO A good clustering method will produce high quality clusters which should have
- High intra-class similarity: Cohesive within clusters
- Low inter-class similarity: Distinctive between clusters

3O Quality function

- There is usually a separate “quality” function that measures the “goodness” of
a cluster

2 Itis hard to define “similar enough” or “good enough”
 The answer is typically highly subjective
3 There exist many similarity measures and/or functions for different applications

Q Similarity measure is critical for cluster analysis



Similarity, Dissimilarity, and Proximity

3 Similarity measure or similarity function
- A real-valued function that quantifies the similarity between two objects
) Measure how two data objects are alike: The higher value, the more alike
- Often falls in the range [0,1]: 0: no similarity; 1: completely similar
3 Dissimilarity (or distance) measure
- Numerical measure of how different two data objects are
- In some sense, the inverse of similarity: The lower, the more alike
J Minimum dissimilarity is often O (i.e., completely similar)
- Range [0, 1] or [0, ==), depending on the definition

3 Proximity usually refers to either similarity or dissimilarity



Data and Dissimilarity Matrices

3 Data matrix (x“ X5
2 A data matrix of n data points with / dimensions ‘ Xy Xy
Q Dissimilarity (distance) matrix
- n data points, but registers only the distance d(i, j) \Xn Xn2
(typically metric)
| | | (0
) Usually symmetric, thus a triangular matrix

- Distance functions are usually different for real, boolean,
categorical, ordinal, ratio, and vector variables

\d(n, 1y d(n,2)
) Weights can be associated with different variables based
on applications and data semantics




(N

Data Matrix

point | attributel | attribute2
xI 1 2
X2 3 5
x3 2 0
x4 . 5

Dissimilarity Matrix (by Euclidean Distance)

xI x2 x3 x4
x1 0
x2 3.61 0
%3 224 5.1 0
x4 424 1 5.39




Numeric Data: Minkowski Distance

QO Minkowski distance: A popular distance measure

d(i,j)= {/l Xg =%y | H| X5 —5 | #osidk| Bp—Xg |

where 7= (x;, X, ..., Xj) and j = (x;, X;, ..., X;) are two /-dimensional data
objects, and p is the order (the distance so defined is also called L-p norm)

O Properties
2 d(i,j)>0ifi#j,and d(i, i) = 0 (Positivity)
2 d(i, j) =d(j, 1) (Symmetry)
2 d(i, j) <d(i, k) + d(k, j) (Triangle Inequality)
O A distance that satisfies these properties is a metric

O Note: There are nonmetric dissimilarities, e.g., set differences



Minkowski Distance

Q p =1: (L, norm) Manhattan (or city block) distance

J E.g., the Hamming distance: the number of bits that are different between two

binary vectors .
y di,j)=x,—x, [+|x, —x, [+-+]x; —x, |

Qp=2: (L, norm) Euclidean distance

d(i, j) = \/| X, =%, #

norm, L_norm) “supremum” distance

2

2
xiz_szl +°"+|xi1_xj1|

Qp—ooo: (L

max

- The maximum difference between any component (attribute) of the vectors

d(i, )= lim f

[
Xy =X 7 | X =2 7 oo 0 = 7 :n}e_11x|xl_f _)5'/'

12



Example

point | attribute 1 |attribute 2

x1 1 2

X2 3 5

x3 2 0

x4 - 5

\; \_‘.
4
2 -
\l
\.‘
0 > 4

Manhattan (L,)

L x1 x2 x4

x1 0

x2 5 0

x3 3 6

x4 6 1 0
Euclidean (L,)

12 x1 X2 x4

x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39
Supremum (L)

Fo x1 2 4

x1 0

%) 3 0

3 2 5 0

x4 3 1 5




Proximity Measure for Binary Attributes

Q A contingency table for binary data

Object
1 0 sum
. : 1 q r q+r
RHjectd 0 8 t s+t
sum q+s r+t p d(' ) r-+8
; T : % A) =
Q Distance measure for symmetric binary variables: g+r+s8s+1t

S o r—+ 38
Q Distance measure for asymmetric binary variables: d(z, j) = q+71+ s

Q Jaccard coefficient (similarity measure for asymmetric

. : q
i i . S'Z’m'.]accard('zs .7) =
binary variables): g+71+s
O Note: Jaccard coefficient is the same as “coherence”: (a concept discussed in Pattern Discovery)
sup(i, 7) B q

. h ) j. ) = .
coherence(i, j) sup(i) + sup(j) — sup(i,j) (¢g+r)+(g+38)—gq



Example

Name |Gender Fever |Cough |Test-1 |Test-2 |Test-3 |Test-4
Jack |M o N P N N N
Mary [(F Y N P N P N
Jim M ¥ 4 N N N N

Q Gender is a symmetric attribute (not counted in)
QO The remaining attributes are asymmetric binary

Q Let the values Y and P be 1, and the value N be O

Q Distance:

d ( jack ,mary ) =
d ( jack , jim ) =

d ( jim ,mary ) =

-8

g-+-r<+3:s

0 +1
2+0+1

1+1

1+1+1
1+ 2
1+1+ 2

= 0.33

= 0.67

= 0.75

20 3 3 6
Jim
-num



Proximity Measure for Categorical Attributes

3 Categorical data, also called nominal attributes
- Example: Color (red, yellow, blue, green), profession, etc.

3 Method 1: Simple matching

J m: # of matches, p: total # of variables

d(i,j)=£5"

3 Method 2: Use a large number of binary attributes

- Creating a new binary attribute for each of the M nominal states



Ordinal Variables

Q An ordinal variable can be discrete or continuous
Q Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
O Can be treated like interval-scaled

) Replace an ordinal variable value by its rank: #; €{l,...M ]

- Map the range of each variable onto [0, 1] by replacing i-th object in
the f-th variable by o]
if

[
J Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1

A Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3

- Compute the dissimilarity using methods for interval-scaled variables



Attributes of Mixed Type

O A dataset may contain all attribute types

- Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
O One may use a weighted formula to combine their effects:
p

(N 3N
Z w; d;

/=1
2 If f is numeric: Use the normalized distance

3 If f is binary or nominal: d;{" =0 if x;= x;; or d;? = 1 otherwise

2 If f is ordinal

r, —1
3 Compute ranks z; (where z,, = h

: /
4 Treat z as interval-scaled



Cosine Similarity of Two Vectors

O A document can be represented by a bag of terms or a long vector, with each
attribute recording the frequency of a particular term (such as word, keyword, or

phrase) in the document
Document teamcoach hockey baseball soccer penalty score win loss season

Document] 5) 0 3 0 2 0 0 2 0 0
Document2 3 0 2 0 1 1 0 1 0 1
Document3 0 7 0 2 1 0 0 3 0 0
Document4 0 1 0 0 1 2 2 0 3 0

Q Other vector objects: Gene features in micro-arrays
Q Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.

Q Cosine measure: If d, and d, are two vectors (e.g., term-frequency vectors), then
___dyed,
ld, [[ x| d,

where e indicates vector dot product, | |d| |: the length of vector d

cos(d,.d,)




Recommended Readings

3 L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster

Analysis, John Wiley & Sons, 1990

d Mohammed J. Zaki and Wagner Meira, Jr.. Data Mining and Analysis: Fundamental

Concepts and Algorithms. Cambridge University Press, 2014

3 Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 3@ ed. , 2011

A Charu Aggarwal and Chandran K. Reddy (eds.). Data Clustering: Algorithms and
Applications. CRC Press, 2014



Partitioning-Based Clustering
Methods



Partitioning Algorithms: Basic Concepts

O Partitioning method: Discovering the groupings in the data by optimizing a specific
objective function and iteratively improving the quality of partitions

O K-partitioning method: Partitioning a dataset D of n objects into a set of K clusters
so that an objective function is optimized (e.g., the sum of squared distances is
minimized, where c, is the centroid or medoid of cluster C,)

1 A typical objective function: Sum of Squared Errors (SSE)
&
SSE(C) = Z Z | x, —c; ||

k=1 Xic,
O Problem definition: Given K, find a partition of K clusters that optimizes the chosen

partitioning criterion
- Global optimal: Needs to exhaustively enumerate all partitions

- Heuristic methods (i.e., greedy algorithms): K-Means, K-Medians, K-Medoids, etc.



K-Means Clustering

Q K-Means (MacQueen’67, Lloyd’57/'82)

) Each cluster is represented by the center of the cluster

Q Given K, the number of clusters, the K-Means clustering algorithm is outlined as follows
- Select K points as initial centroids
- Repeat
d Form K clusters by assigning each point to its closest centroid
d Re-compute the centroids (i.e., mean point) of each cluster
- Until convergence criterion is satisfied
Q Different kinds of measures can be used

J Manhattan distance (L, norm), Euclidean distance (L, norm), Cosine similarity



Example

Inttial l:hmov Centers Sdocttd kmeans teration =1, total distance =34 296

kmeans teration =1, new centers calculated

4 4
S dﬁl PMS i O cluster! O cluster !
- conter 1 . | i «  cluster2 =" || » cluster2 &
3r ‘; center 2 Asf'gn 3 L c’:nl'er! = 1 RecomPUte ? -‘, conter |
| | points to| - core: e ’ ¥ conter2
¥ .o clusters’| B - 1 cafikars | [ =
ol | I « O ©0 ] L ' v v
& =) ” ]
ok o 4 ok ok
+
A Ak Wb "
24 a2k 2k
3 B e N “— M .
-3 e h % o OI d ‘ s & ? 4 '33 2 A 0 1 2 3 F] % 2 R 0 4
The original data points Redo Pon_qt assugnment
rand0m|y SeleCtK=2centl'0idS . hmmt“m-on%mﬁddns ce 3
O cluster !
. . N *  cluster 2
Execution of the K-Means Clustering Algorithm 3 ¥ s
center 2
Select K points as initial centroids 1
Repeat Y ok
* Form K clusters by assigning each point to its closest centroid o % o
* Re-compute the centroids (i.e., mean point) of each cluster At "
Until convergence criterion is satisfied a}
% 2 3 0 1 2 3 4



K-Means Discussion

Q Efficiency: O(tKn) where n: # of objects, K: # of clusters, and t: # of iterations
J Normally, K, t << n; thus, an efficient method
a K-means clustering often terminates at a local optimal
- Initialization can be important to find high-quality clusters
3 Need to specify K, the number of clusters, in advance
) There are ways to automatically determine the “best” K
- In practice, one often runs a range of values and selected the “best” K value
Q Sensitive to noisy data and outliers
- Variations: Using K-medians, K-medoids, etc.
Q K-means is applicable only to objects in a continuous n-dimensional space
- Using the K-modes for categorical data
a Not suitable to discover clusters with non-convex shapes
- Using density-based clustering, kernel K-means, etc.



Variations of K-Means Clustering

O There are many variants of the K-Means method, varying in different aspects

- Choosing better initial centroid estimates

J K-means++, Intelligent K-Means, Genetic K-Means To be'discussed later
- Choosing different representative prototypes for the clusters

N

J K-Medoids, K-Medians, K-Modes To be discussed later

- Applying feature transformati?rm%
J Weighted K-Means, Kernel K-Means To be discussed later




Initialization of K-Means

Q Different initializations may generate rather different clustering e x
results (some could be far from optimal)

Q Original proposal (MacQueen’67): Select k seeds randomly ] - . ,
- Need to run the algorithm multiple times using different seeds
Q There are many methods proposed for better initialization of k seeds
J K-Means++ (Arthur & Vassilvitskii’07):
 The first centroid is selected at random

- The next centroid selected is the one that is farthest from the currently selected
(selection is based on a weighted probability score)

) The selection continues until k centroids are obtained



Example

Initial Cluster Centers Selected

kmeans teration =1, total distance =28 8648

kmeans teration =1, new centers calculated

I . ;m points ; ;lus!ori i c'lu“" 1
H center1 cluster 2 2
il center 2 d : center 1 3} Z:‘:‘:l‘
| | Assign i Recompute center 2
1 ) . points to | i ‘ | cluster *f
L " ¥ . | clusters, | A : centers +
of ' e or - o
Ak . * i > -+. Ak . Ak 4 +
3 r— 5 4 5 3 r ". R 0 i 2 [ I 0 i 2
Another random selection of k i . IRE REIOUON T W SH SRS
centroids for the same data points O cluster 1
o ok comars
QO Rerun of the k-Means using another random k seeds 1 ,+_
Q This run of k-Means generates a poor quality clustering o
Ik ) :+_
3

~
of
~N




Outliers: From K-Means to K-Medoids

Q The K-Means algorithm is sensitive to outliers!—since an object with an extremely
large value may substantially distort the distribution of the data

Q K-Medoids: Instead of taking the mean value of the object in a cluster as a reference
point, medoids can be used, which is the most centrally located object in a cluster

Q The K-Medoids clustering algorithm:
- Select K points as the initial representative objects (i.e., as initial K-medoids)
J Repeat
3 Assigning each point to the cluster with the closest medoid
Q Randomly select a non-representative object o,
3 Compute the total cost S of swapping the medoid m with o,
A If S< 0, then swap m with o, to form the new set of medoids

- Until convergence criterion is satisfied



Partitioning Around Medoids (PAM)

' <> ;
{EPUAGEDY Arbitrary
4 e T. o choose K
” | o1—10¢ object as
; ﬁg initial
: Q medoids
K=2
Select initial K medoids randomly
Repeat
Swapping O
Object re-assignment and %:mim
Swap medoid m with o if it If quality is
improves the clustering quality ~ '™mProved

Until convergence criterion is satisfied

y's o
o :
o 2% T Assign
16 each
o &V remaining
S object to
O neare;t
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3 13
‘—
*> Compute
;; 11 total cost of
A H o> z
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K-Medoids Discussion

Q K-Medoids Clustering: Find representative objects (medoids) in clusters
Q PAM (Partitioning Around Medoids: Kaufmann & Rousseeuw 1987)
- Starts from an initial set of medoids, and

2 Iteratively replaces one of the medoids by one of the non-medoids if it improves
the total sum of the squared errors (SSE) of the resulting clustering

- PAM works effectively for small data sets but does not scale well for large data
sets (due to the computational complexity)

2 Computational complexity: PAM: O(K(n - K)?) (quite expensive!)
Q Efficiency improvements on PAM
- CLARA (Kaufmann & Rousseeuw, 1990):
2 PAM on samples; O(Ks? + K(n - K)), s is the sample size
- CLARANS (Ng & Han, 1994): Randomized re-sampling, ensuring efficiency + quality



K-Medians & Outliers

O Medians are less sensitive to outliers than means

- Think of the median salary vs. mean salary of a large firm when adding a few top
executives!

Q K-Medians: Instead of taking the mean value of the object in a cluster as a reference
point, medians are used (L,-norm as the distance measure)

Q The criterion function for the K-Medians algorithm: g Z‘: Z %, - med, |
Q The K-Medians clustering algorithm: k=1 xiec,
- Select K points as the initial representative objects (i.e., as initial K medians)
) Repeat
O Assign every point to its nearest median
O Re-compute the median using the median of each individual feature

2 Until convergence criterion is satisfied



K-Modes: Clustering Categorical Data

Q K-Means cannot handle non-numerical (categorical) data

- Mapping categorical value to 1/0 cannot generate quality clusters for high-
dimensional data

O K-Modes: An extension to K-Means by replacing means of clusters with modes
Q Dissimilarity measure between object X and the center of a cluster Z
Q O(x;,z)=1- nj’/n, when x; =z, ; 1 when x; # z,
3 where z; is the categorical value of attribute j in Z, n, is the number of objects
in cluster /, and n is the number of objects whose attribute value is r
QO This dissimilarity measure (distance function) is frequency-based
O Algorithm is still based on iterative object cluster assignment and centroid update

Q A fuzzy K-Modes method is proposed to calculate a fuzzy cluster membership
value for each object to each cluster

O A mixture of categorical and numerical data: Using a K-Prototype method



Kernel K-Means Clustering

Q Kernel K-Means can be used to detect non-convex clusters

J K-Means can only detect clusters that are linearly separable

Q Idea: Project data onto the high-dimensional kernel space, and
then perform K-Means clustering

- Map data points in the input space onto a high-dimensional feature
space using the kernel function

J Perform K-Means on the mapped feature space
O Computational complexity is higher than K-Means

J Need to compute and store n x n kernel matrix generated from the
kernel function on the original data

QO The widely studied spectral clustering can be considered as a variant of
Kernel K-Means clustering
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Kernel Functions and Kernel K-Means

Q Typical kernel functions:

2 Polynomial kernel of degree h: K(X, X;) = (X;-X; + 1)°

2 Gaussian radial basis function (RBF) kernel: K(X;, X;) = € Y=gl "
2 Sigmoid kernel: K(X;, X;) = tanh(kX;X; -)
Q The formula for kernel matrix K for any two points x,, X €Ccis K., =0(x;)ed(x;)

Q The SSE criterion of kernel K-means:  §Sp () = Z Z 4 (x)—c, |

l\(;

2 The formula for the cluster centroid: Z é(x)

C__
‘ \m

Q Clustering can be performed without the actual individual projections ¢(x;) and ¢(x;)
for the data points x;, x; € C,



Example

Q Gaussian radial basis function (RBF) kernel: K(X, X;) = e Vi=X,l% 1207

Q Suppose there are 5 original 2-dimensional points:
a xl(ol O)r X2(4, 4)' X3('41 4)1 X4(-4, '4)r XS(4I '4)

Q If we set o to 4, we will have the following points in the kernel space
32

Q E.g, ||x1—x2|| = (0— 4)2+(0 4)2—32 therefore, K(xl,xz)—e 242 = 71

42 +47
e 247 =¢~1
X 4 4 " =; - o~
2 e~ ! 0 e~2 et e~ ?
x» —4 4 _ = e -
3 e~ 1 e~ ? 0 e~ ? et
x, —4 —4 _ _ = "
4 e~1 e~ e~ 2 0 e 2
XS 4—4



Example: Kernel K-Means Clustering

s Kmeans -
Original Data Point Gaussian Kemel Kmeans, sigma = 4

10 / " N *\Q'
8 . . 1 g st ’
o . ~ » x
- '. e " g - n
) - 6 o > X et /V\ * '
X i g PRERERES TR
4 e oy 4 e : S
ol W . o L e Sl
L % i ‘41.49\. kT §
2 SO 24 ‘ " o
. ionedl® - 3 o
« W g v i o
ot Ll ok . st "
ot ox >
2 - 2t o u
" - x R =
-4 S -' 4} ol X
A 4 5 * A% ™
L o >
8t 5 e S Ll
8 8t .
10 M " i i i i " 10 " " A M M i N 10 4 . 2 2 2 " M
8 6 -4 -2 0 2 4 6 8 8 6 -4 -2 0 2 4 6 8 ) I 4 D n > 2 e a

The result of Gaussian Kernel K-Means clustering

The original data set The result of K-Means clustering

Q The above data set cannot generate quality clusters by K-Means since it contains non-
covex clusters

O Gaussian RBF Kernel transformation maps data to a kernel matr;jx K\'fo‘r any two points
X, X: K,  =¢(x,)e¢(x,) and Gaussian kernel: K(X, X)) =¢ X -X,112 20

Q K-Means clustering is conducted on the mapped data, generating quality clusters
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Next session!



Hierarchical Clustering

Agglomerative: all cases start separately, then
similar cases are joined

Divisive: all cases start in one category, then split

Dendrogram shows all levels of splits



DBSCAN

DBSCAN

* Density-based spatial
clustering of
applications with noise

* Works on local density

* Finds nonconvex
and nonlinearly
separable clusters

e Points can also be classified
as noise




