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1 Principal Component Analysis

Principal Component Analysis (PCA) is a multivariate statistical procedure concerned with representing
the covariance structure of a set of p variables through a small number of their linear combinations.

Pearson(1901) and Hotelling (1933) defined principal components as a sequence of projections of the data,
mutually uncorrelated and ordered in variance. This approach is concerned with explaining the variance-
covariance structure through a few linear combinations of the original variables. Although p components
are required to reproduce the total system variability, often much of this variability can be accounted by
a small number q < p of the principal components. If so, then there is almost as much information in q
principle components as there is in original data with p variables. The q principle components can then
replace the initial p variables, and the original data set which was consisting of n measurements on p
variables is reduced to n measurements on q principal components. The idea is to make sure these linear
projections keep interesting information in the original data. This is based on the assumption that the
useful and interesting information in data is related to its variability
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In general PCA is done for a variety of reasons. PCA is often the first step in an analysis to be followed
by visualization, clustering, regression, classification, etc. One can perhaps consider its use in one of the
following ways:

1. Dimension reduction: This is the task of transforming our data set to one with less features.
These new features could be some of the old features or some linear or nonlinear combinations of old
features.

(a) One way of dimension reduction is through variable selection (known as feature selection).

(b) Another way is to create a set of linear or nonlinear transformation of the inputs, using projection
method (known as feature extraction). We want this transformation to preserve the main structure
that is present in the feature space. PCA can be thought of as a method which provides a specific set
of projections which represent a given data set in fewer dimensions. This has obvious advantages when
it is possible to reduce dimensionality to two or three as visualization becomes very straightforward
but it should be acknowledged that reduced dimensionality has advantages beyond visualization.
Note that:

2. Decorrelating data: PCA is often used to decorrelate the data, i.e., transform correlated variables
into uncorrelated ones (to sphere the data). Whilst univariate data can be standardized by centering
and scaling, in a multivariate context one may also wish to “standardize” the correlation between
variables to zero.

3. Directions with most or least variability: PCA can be used to find linear combinations of data
which have relatively large (or relatively small) variability.

4. Identifying important features: PCA can be used to discover important features of the data.
This can be done using graphical displays of the PC scores.

5. Outlier detection: PCA can be used to identify outliers, usual data points and clusters in the data
points. The first few PC scores can reveal whether most of the data actually live on a linear subspace
of the sample space. The last few PC scores show those linear linear projections of the original data
that have the smallest variance. Any PC with zero or nearly zero variance is virtually a constant
and hence can be used to detect collinearity as well as outliers that pop-up and alert the perceived
dimensionality of the data.

6. Interpreting data: PCA can be used for interpretation of our data set as well. An analysis of
principle components often reveals relationships that were not previously suspected and thereby
allows interpretations that would not originally result.

As we will see shortly, the eigenvalues and eigenvectors of the covariance (correlation) matrix are the
essence of a PCA. The eigenvectors determine the directions of maximum variabilities and the eigenvalues
specify the variances. When the first few eigenvalues are much larger than the rest, most of the total
variance can be “explained” in fewer than p dimension.

Remark 1. We have said so many good things about PCA. However, PCA has its own problems. Emphasis
on variance is where the weakness of PCA lies in:

1. PCs depend heavily on measurement scaless. Where the data matrix contains measurements of vastly
differing orders of magnitude, the PC will be greatly biased in the direction of larger measurement. It is
therefore recommended to calculate PCs from correlation matrices instead of covariance matrices.
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2. Robustness to outliers is also an issue. As we know, variance is affected by outliers therefore PCs can
highly be affected by outliers.

3. Although PCs are uncorrelated, scatterplots sometimes reveal structures that are not necessarily revealed
by linear combinations.

2 Projection onto unit vectors

Projection plays an important role in the development of PCA. For a unit norm vector v ∈ Rp with
||v||22 = v>v = 1, the projection of x ∈ Rp onto v is

Projxv = x>v
v>vv = (x>v)v = c · v,

where c = x>v is like a score or a coefficient. For a matrix Xn×p ∈ Rn×p representing a data set consisting
on n observations of p variables, by projecting each row xi ∈ Rp onto v we get

Xv =


x>1 v
x>2 v
...

x>nv

 ∈ Rn

as the scores and the rows of Xvv> ∈ Rn×p are the projected vectors. Note that xj = [xj1, . . . , xjp]>.

As an example, below we have generated 100 observations in a 2-dimensional space and we would like to
project them onto 3 directions

v1 =
( 0.5√

1.25
,

1√
1.25

)
, v2 =

( 1√
1.25

,
0.5√
1.25

)
and v3 = (1, 0),

respectively.

set.seed(2021)
X <- matrix(rnorm(100, 0, 0.7), ncol=2)
v1 <- c(0.5/sqrt(1.25), 1/sqrt(1.25))
v2 <- c(1/sqrt(1.25), 0.5/sqrt(1.25))
v3 <- c(1, 0)
plot(X, pch=20, xlab=expression(X[1]), ylab= expression(X[2]))
arrows(0, 0,0.5/sqrt(1.25), 1/sqrt(1.25), 0.1, lwd=2, col="darkgreen")
arrows(0, 0, 1/sqrt(1.25),0.5/sqrt(1.25), 0.1, lwd=2, col="red")
arrows(0, 0,1, 0, 0.1, lwd=2, col="blue")
text(0.65,0.10, expression(v[3]) )
text(0.65,0.45, expression(v[2]) )
text(0.25,0.85, expression(v[1]) )

After projecting the points onto each direction, we have depicted the projected points and you can see
that not all projections are equal in terms of capturing the interesting feature of the data set in terms of
its variability.
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Figure 1: Scatterplot of 100 observations with 3 directions to project them onto.

par(mfrow=c(1, 3))
score1 <- X%*%v1
score2 <- X%*%v2
score3 <- X%*%v3

y1 <-score1%*%t(v1)
plot(y1, ylim=c(-1.5, 1.5), xlim=c(-1.5, 1.5),

pch=10, col="darkgreen", xlab="", ylab="", main="Projected onto v1")

y2 <-score2%*%t(v2)
plot(y2, ylim=c(-1.5, 1.5), xlim=c(-1.5, 1.5),

pch=5, col="red", xlab="", ylab="", main="Projected onto v2")

y3 <-score3%*%t(v3)
plot(y3, ylim=c(-1.5, 1.5), xlim=c(-1.5, 1.5),

pch=8, col="blue", xlab="", ylab="", main="Projected onto v3")
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Figure 2: Projected points onto 3 directiosn depicted by different colours representinng directions

Also, the projection of x ∈ Rp onto the spaces spanned by orthonormal vectors v1, . . . ,vk ∈ Rp is given by
k∑
j=1

(x>vj)× vj =
k∑
j=1

scorej × vj .
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As a generalization, consider a data matrix X ∈ Rn×p and suppose we want to project X onto columns of
a matrix V ∈ Rp×k consisting of columns vj ∈ Rp, j = 1, . . . , k. The scores are given by XV ∈ Rn×k with
jth column Xvj = (x>1 vj , . . . ,x>nvj)> ∈ Rn and the projections are the rows of XVV> ∈ Rn×p.

As an example suppose we have the following 2000 observations in a 3 dimensional space. We would like
to project these points onto 3 spaces created by horizontal and vertical planes denoted by xy, yx and xz,
respectively. This is done below and after projecting the points onto the spaces created by two vectors
we have depicted the projected points and you can easily see again not all projections capture the most
interesting features in our data set.
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Figure 3: Scatterplot of 2000 points in a three dimensional space.

Projection onto xy
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Projection onto yz
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Projection onto zx
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Figure 4: Projections of point in 3D onto 2D spaces.

In what follows we would like to find a way to project our data onto directions that capture the most
variability among our data set.

3 Population principal components and PC scores

As we mentioned earlier, there are a number of ways in which one can reduce the dimensionality. Suppose
we are dealing with a p-dimensional space representing the sample space of a p-variate random vector
Xp×1 = (X1, . . . , Xp)>. In practice we will observe data (say n observations) from this space that can be
represented in terms of a matrix of n× p dimension that can be used to estimate the variance-covariance
structure of those variable in the p-dimensional space. But for now, suppose we have access to the true
(population) variance-covariance structure of these random variables in the p-dimensional space and denote
it by ΣX. In many practical problems p is often very large and we would like to move from a large p-
dimensional space into another space that has a lower dimension q with q < p. There are different ways
to find such a q-dimensional space. To do this, we need to find Wq×1 = (W1, . . . ,Wq)> such that the new
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space has as much (or almost as much) information as the original space associated with Xp×1, which we
define it as follows

trace(ΣX) = Total variance of {X1, . . . , Xp}
= σ2

1 + · · ·+ σ2
p

≈ Total variance of {W1, . . . ,Wq}
= trace(ΣW),

where σ2
i = V ar(Xi), i = 1, . . . , p.

On might want to finding this q-dimensional space such that its variance structure is very similar to the
variance structure of the original space. In other words find Wq×1 by forming linear combinations of the
original random vector X, i.e., Wq×1 = A>q×pXp×1 and construct the coefficient matrix Aq×p such that
trace(ΣX) ≈ trace(ΣW) and ΣW is diagonal.
In PCA, the above mentioned problem is solved in a more general way. First, the original space associated
with Xp×1 is rotated by generating a new p-dimensional space consisting of linear combinations (called
principal components) of X such that the coordinates of the new space are orthogonal (i.e., uncorrelated)
and have a diagonal variance covariance matrix. Also, PCs are obtained such that they are ordered in
terms of their variances. These linear combinations represent a new orthogonal coordinate system with p
axes. The new axes represent the directions with maximum variability and provide a simpler and more
parsimonious description of the variance-covariance structure. As coordinates in the new system are ordered
based on their variability, one might decide to drop the last few ones and work with a system consisting
of only q coordinates q < p and still make sure that much of the variability in the original space is kept
in this lower dimensional space. We now formulate the problem mathematically and show how PCs are
developed.
Let X> = (X1, . . . , Xp) be a random vector having the covariance matrix Σ := ΣX with eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0.
Exercise 1. Show that any covariance matrix Σ is non-negative definite with eigenvalues λ1 ≥ λ2 ≥ . . . ≥
λp ≥ 0.

Consider the following linear combinations, where ai = (ai1, . . . , aip)>:

W1 = a>1 X = a11X1 + a12X2 + . . .+ a1pXp,

W2 = a>2 X = a21X1 + a22X2 + . . .+ a2pXp,

...
Wp = a>p X = ap1X1 + ap2X2 + . . .+ appXp,

with
V ar(Wi) = a>i Σai, i = 1, 2, . . . , p,

and
Cov(Wi,Wj) = a>i Σaj , i, j = 1, 2, . . . , p.

Principal components are uncorrelated linear combinations W1, . . . ,Wp whose variances are as large as
possible.

• The first principal component is W1 = a>1 X with maximum variance. So, one needs to choose
a>1 = (a11, a12, . . . , a1p) such that V ar(W1) = a>1 Σa1 is maximized. As a>1 Σa1 can be maximized
arbitrarily by multiplying a>1 with some positive constant, it is convenient to restrict our attention
to coefficient vectors a>1 such that it is a unit vector (that is has length one, a>1 a1 = ||a||22 = 1). So,
finding W1 reduces to finding a>1 such that V ar(W1) = a>1 Σa1 is maximized subject to a>1 a1 = 1.
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• We would like to find the second PC such that its variance is maximized but it is also uncorrelated
with W1. In other words, we would like to construct W2 = a>2 X and select a>2 = (a21, a22, . . . , a2p)
such that V ar(W2) = a>2 Σa2 is maximized subject to a>2 a2 = 1 and Cov(W1,W2) = a>1 Σa2 = 0. Note
that we are essentially finding a direction W2 orthogonal to W1 with the highest variance. This is
done as we have already explained the variance in X along W1, and now we want to look at variance
in a different direction. Any direction not orthogonal to W1 would necessarily have some overlap
with W1 and creates some redundancy in explaining the variance in X.

• In general, to find the ith PC, Wi = a>i X, we would like to choose a>i = (ai1, ai2, . . . , aip) such that
V ar(Wi) = a>i Σai is maximized subject to a>i ai = 1 and Cov(Wi,Wj) = a>i Σaj = 0, j = 1, . . . , i−1.

Theorem 1. Suppose Cov(Xp×1) = Σ where X> = (X1, . . . , Xp). Let (λ1, e1), (λ2, e2), . . . , (λp, ep) be the
eigenvalues and eignevectors of Σ such that λ1 ≥ λ ≥ · · ·λp ≥ 0. Then, the ith PC associated with X is
given by

Wi = e>i X = ei1X1 + . . .+ eipXp, i = 1, 2, . . . , p.

Also, for this choice of coefficients

V ar(Wi) = e>i Σei = λi, i = 1, 2, . . . , p,

and
Cov(Wi,Wj) = e>i Σej = 0, i 6= j.

Proof: Using the definition of PCs, we first need to obtain W1 = a>1 X with a>1 a1 = 1 and the goal is to

max
a1

a>1 Σa1 = max
a1

a>1 Σa1
a>1 a1

.

However, as we showed earlier in this course, this maximum happens at the first eigenvalue λ1 which is
attained at â1 = e1. Also, note that e>1 e1 = 1 since eigenvectors are normalized. Thus

max
a

a>1 Σa1
a>1 a1

= λ1 = e>1 Σe1
e>i e1

= e>1 Σe1 = V ar(W1) = V ar(e>1 X)

Similarly, to find the ith PC we need to obtain Wi = a>i X such that a>i ai = 1 and ai ⊥ aj , for j =
1, 2, . . . , i− 1. That is, finding ai such through

max
ai⊥ai,...,ai−1

a>i Σai = max
ai⊥ai,...,ai−1

a>i Σai
a>i ai

.

As we saw in Chapter 3:

max
ai⊥ai,...,ai−1

a>i Σai
a>i ai

= λi, i = 2, . . . , p.

For the choice a = ei where e>i ej = 0, i = 2, . . . , p, and j = 1, . . . , i− 1, we have

e>i Σei
e>i ei

= e>i Σei

= V ar(Wi)
= e>i (λiei)
= λie>i e>i
= λi.
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It remains to show that Cov(Wi,Wj) = 0 for j 6= i. To see this note that

Cov(Wi,Wj) = e>i Σej
= e>i (λjej)
= λje>i ej
= 0,

which completes the proof. Note that the eigenvectors of Σ are orthogonal if λ1, . . . , λp are distinct. If not,
eigenvectors can be chosen to be diagonal. So, principal components are uncorrelated and have variances
equal to the eigenvalues of Σ.
Note that Wi = ei1X1 + . . . + eipXp and each of these eij ’s represents the importance of Xj to the ith
principal component, irrespective of other variables. Also, each eij is is proportional to the correlation
coefficient between Wi and Xj . To be more specific

eij = σj√
λi
ρWi,Xj , i, j = 1, 2, . . . , p.

To see this, note that Xj = l>j X = (0, 0, ..., 1, 0, ...., 0)X where lj has 1 as its jth element and 0 otherwise.
So,

Cov(Xj ,Wi) = Cov(ljX, eiX)
= ljΣei
= ljλiei
= λieij

and
ρWi,Xj = Cov(Xj ,Wi)√

V ar(Xj)
√
V ar(Wi)

= λieij

σj
√
λi
,

which results in what we claimed. Note that ρWi,Xj ’s help to interpret the components as they only measure
the univariate contribution of an individual Xj to a principal component Wi. That is, they do not indicate
the importance of Xj to Wi in the presence of other Xk’s. So, it is good in practice to consider both eij
and ρWi,Xj . Also, if Xjs are standardized with σj = 1 then ρWi,Xj =

√
λieij .

Theorem 2. Suppose Cov(Xp×1) = Σ where X> = (X1, . . . , Xp). Let (λ1, e1), (λ2, e2), . . . , (λp, ep) be the
eigenvalues and eignevectors of Σ such that λ1 ≥ λ ≥ · · ·λp ≥ 0. Let the ith PC associated with X be given
by

Wi = e>i X,

with
V ar(Wi) = λi.

Then, PC components W> = (W1, . . . ,Wp) preserve the total variance in X> = (X1, . . . , Xp), i.e.:

trace(Σ) =
p∑
i=1

V ar(Xi) =
p∑
i=1

V ar(Wi) =
p∑
i=1

λi

Proof: To show this result, note that by definition

trace(Σ) =
p∑
i=1

V ar(Xi).
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Also, one can write Σ as Σ = PΛP> = ∑p
i=1 λieie>i such that P = [e1, . . . , ep] contains the eigenvectors

and PP> = P>P = I. So, as V ar(Wi) = λi, we have

trace(Σ) = trace(PΛP>) = trace(ΛPP>) = trace(Λ) =
p∑
i=1

λi =
p∑
i=1

V ar(Wi),

and this completets the proof.

The proportion of the total variation that is explained by the ith PCs is given by

λi∑p
j=1 λj

, i = 1, 2, . . . , p.

Similarly, the total variance explained by the first q PCs is

λ1 + . . .+ λq
λ1 + . . .+ λp

.

If most (e.g., 80% or 90%) of the total population variance can be attributed to the first q PCs then
these components can replace the original p variables without much loss of information. In particular, if
λ1+...+λq
λ1+...+λp ≈ 1, then we do not lose much by transforming the original variables into fewer new (principal
component) variables.

Example: As a toy example, consider the following variance-covariance matrix associated with X> =
(X1, X2, X3).

sigma<-matrix(c(1, -2, 0, -2, 5, 0, 0, 0, 2), ncol=3, byrow=TRUE)
sigma

## [,1] [,2] [,3]
## [1,] 1 -2 0
## [2,] -2 5 0
## [3,] 0 0 2

We can calculate the principal components in R. To this end, we can simply use eigen().

results<- eigen(sigma)
results$vectors # gives the eigenvector(weigth/contribution of each variable to PCs)

## [,1] [,2] [,3]
## [1,] -0.3826834 0 0.9238795
## [2,] 0.9238795 0 0.3826834
## [3,] 0.0000000 1 0.0000000

results$values # gives the eignevalues

## [1] 5.8284271 2.0000000 0.1715729
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Now, PCs W = (W1,W2,W3) associated with X are obtained as

Wi = ei1X1 + ei2X2 + ei3X3, i = 1, 2, 3,
with ei = (ei1, ei2, ei3) being the ith eigenvector associated with Cov(X) = Σ.
As we see, principal components are given by:

W1 = −0.383X1 + 0.924X2,

W2 = X3,

W3 = 0.924X1 + 0.383X2,

with the following variances

V ar(W1) = λ1 = 5.8284271,
V ar(W2) = λ2 = 2.0000000,
V ar(W3) = λ3 = 0.1715729.

It is easily seen that trace(Σ) = 8 = 5.8284271 + 2 + 0.1715729 = 8 = λ1 + λ2 + λ3. Also, it can be seen
that Y1 explains about 0.7285534%, and (W1,W2) about 0.9785534% of the variations in X.

4 Centered and normalized PCs

Centered PCs are used to make PCs centered around zero. To this end, we first center the X using µ and
define

Wi = e>i (X− µ).
Let

ρ =


1, ρ12, . . . , ρ1p
ρ12, 1, . . . , ρ2p

...,
..., . . . ,

...
ρ1p, ρ2p, . . . , 1

 ,
represent the correlation matrix associated with X> = (X1, . . . , Xp) then the PCs obtained from ρ corre-
spond to the PCs of standardized variables

Z = Ω−
1
2 (X− µ),

where
Ω = diag(σ2

1, . . . , σ
2
p).

In this case, normalized PCs are obtained as

W∗
i = e∗i

>Z

= e∗i
>Ω−

1
2 (X− µ)

where (λ∗i , e∗i ), i = 1, . . . , p are the eigenvalues and eigenvectors obtained from ρ. In this setting we have
p∑
i=1

V ar(W ∗i ) = p =
p∑
i=1

V ar(Zi),

and
Cov(W ∗i , Zj) = e∗ij

√
λ∗i .

Note that the proportion of (standardized) population variance due to the ith principal component is λ∗i /p
where λ∗i is the ith eigenvalue of ρ.
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Remark 2. In general the PCs derived from the covariance matrix Σ are different from those derived from
ρ. Furthermore, one set of principal components is not a simple function of the others. This suggests that
the standardization is not inconsequential. Variables should probably standardized if they are measured on
scales with widely different ranges or if the measurement units are not common among variables.

Example: Consider the following covariance matrix:

sigma <- matrix(c(1, 4, 4, 100), nrow=2, byrow=TRUE)
sigma

## [,1] [,2]
## [1,] 1 4
## [2,] 4 100

with an associated correlation matrix ρ:

rho <- sigma/sqrt( (diag(sigma)) %*% t(diag(sigma)) )
rho

## [,1] [,2]
## [1,] 1.0 0.4
## [2,] 0.4 1.0

The eigenvalues and eigen vectors of Σ are given by

eigen(sigma)

## eigen() decomposition
## $values
## [1] 100.1613532 0.8386468
##
## $vectors
## [,1] [,2]
## [1,] 0.04030552 -0.99918740
## [2,] 0.99918740 0.04030552

which results in PCs of Σ to be

W1 = 0.040X1 + 0.999X2

W2 = −0.999X1 − 0.040X2

Due to its large variance, we observe that X2 completely dominates the first PC determined from Σ. This
PC also explains λ1

λ1+λ2
= 0.992 of the total population variance. Based on ρ, one can easily get the

following eigenvalues and eigenvectors
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eigen(rho)

## eigen() decomposition
## $values
## [1] 1.4 0.6
##
## $vectors
## [,1] [,2]
## [1,] 0.7071068 -0.7071068
## [2,] 0.7071068 0.7071068

which results in

W ∗1 = 0.707Z1 + 0.707Z2

= 0.707(X1 − µ1
σ1

) + 0.707(X2 − µ2
σ2

)

= 0.707(X1 − µ1) + 0.0707(X2 − µ2)

and

W ∗2 = −0.707(X1 − µ1) + 0.0707(X2 − µ2)

Here, we see that when X1 and X2 are both standardized the resulting variables equally contribute to
the PCs determined from ρ. Here, the first PC explains around λ∗

1
p = 1.4

2 = 0.7 of the total standardizes
population variance.

We can also calculate the correlation between original variables and the PCs. These for PCs based on Σ
are given by

cor.WX <- function(mat){
vals= mat
rownames(vals) = paste("X", 1:nrow(mat), sep="")
colnames(vals) = paste("W", 1:nrow(mat), sep="")

for(i in 1: ncol(vals)){
val= t(eigen(mat)$vectors[,i])* sqrt(eigen(mat)$values[i])
vals[,i] = val/sqrt(diag(mat))
}

return(vals)
}

cor.WX(sigma) # gives the correlation of W_i and X_k, for i,k = 1,2

## W1 W2
## X1 0.4033802 -0.915032462
## X2 0.9999932 0.003691085

while based on ρ are
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cor.WX(rho) # gives the correlation of W_i and Z_k, for i,k = 1,2

## W1 W2
## X1 0.83666 -0.5477226
## X2 0.83666 0.5477226

5 Sample PCA

In practice, we do not know the population variance-covariance Σ or correlation matrices ρ. Instead we have
a sample matrix X ∈ Rn×p where n is the number of observations which is obtained on p variables. Sample
PCs are defined as before except we replace Σ with S the sample variance-covariance matrix and ρ with
R the sample correlation coefficient matrix, respectively. Sample PCs can be very useful in summarizing
the observed variability in the data set and this is indeed what most people will end up using in practice.
To be more specific, consider a random sample X1, . . . ,Xn from the underlying population which make a
matrix of observation in Rn×p given by

X = Datan×p =


X11, . . . , X1p
X21, . . . , X2p

..., . . . ,
...

Xn1, . . . , Xnp

 ,
Suppose S is the sample covariance matrix associated with X, given by

Sp×p = 1
n− 1Z>Z = 1

n− 1(X− 1>X̄)>(X− 1>X̄),

where

Z =


X11 − X̄1, . . . , X1p − X̄p

X21 − X̄1, . . . , X21 − X̄p
..., . . . ,

...
Xn1 − X̄1, . . . , Xnp − X̄1

 = X− 1>X̄,

1 ∈ Rn is a vector of 1s and X̄ = 1
nX>1 ∈ Rp is the sample mean vector. Note that trace(S) = ∑p

i=1 Sii is
the total sample variance, where Sii is the sample variance of Xi.
Let λ̂1 ≥ . . . ≥ λ̂p be the eigenvalues of S and denote their corresponding eigenvectors with ê1, . . . , êp.
Then, the ith sample principal component is given by

Ŵi = ê>i X = êi1X1 + . . .+ êipXp.

Properties of sample PCs are also obtained similar to the population PCs. For example

1. Sample variance of each PC Ŵi is λ̂i.

2. Sample PCs Ŵi and Ŵj are uncorrelated for i 6= j.

3. Total sample variance is given by ∑p
i=1 Sii = ∑p

i=1 λ̂i.

4. Sample correlation between Ŵi and Xj is given by êij

√
λ̂i√

Sjj

5. Centered sample PCs are given by Ŵi = ê>i (X− 1>X̄).
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5.1 Singular value decomposition for PCA calculation

let Zn×p = X− 1>X̄ be the centered data matrix. Then

(n− 1)S = Z>Z.

Recall the singular value decomposition (SVD) for Zn×p = UDV>, where

1. U is an n × p matrix consisting of observations scores. Columns of U are the eigenvectors of ZZ>
and form an orthogonal basis for the observation profiles, so that UU> = In×n.

2. D is a p × p matrix of singular values. It is diagonal and its first r = min(n, p) singular values are
non-zero and equal to the square roots of the eigenvalues of both Z>Z and ZZ>.

3. V> is also a p × p matrix of variable weights. Columns of V are eigenvectors of Z>Z and form
an orthonormal basis for the variables, as V>V = Ip×p. Note that columns of V are the êi’s from
before.

Using the definition of SVD, we have

(n− 1)S =
(

UDV>
)>(

UDV>
)

= VD>U>UDV>

= VD>DV> (as U>U = In×n)
= VD2V>.

This essentially means that the eigenvalues of S are the diagonal entries of 1
n−1D2 and the columns of the

orthogonal matrix V are the eigenvectors of S.
This is a very useful in practice as finding the eigenvalues and eigenvectors of S when we are dealing with
a very high dimensional setting is challenging. For example, suppose we have n = 100 images with a
resolution of 180 × 200. Each image constitutes vector intensities of length p = 180 × 200 = 36000. To
find the PCs one needs to work with an S of dimension 36000 times 36000 and this is computationally
unrealistic. In R a 36000× 36000 matrix requires 36000× 36000× 8 = 10368000000 bytes that needs 10.4
GB RAM memory. To resolve this issue, one can use SVD as mentioned above. Another solution is to
note that when p is very large and n is relatively small then 1

n−1ZZ> is a matrix of n× n and it is much
easier to work with such a matrix than S and one can find the eigenvalues and eigenvectors of 1

n−1ZZ>
say (γi,ui), i = 1, . . . , n which satisfy

1
n− 1ZZ>ui = γiui.

Multiplying both sides with Z> we have

Z>
( 1
n− 1ZZ>ui) = γiZ>ui,

or, equivalently ( 1
n− 1Z>Z

)
Z>ui = γiZ>ui,

or
S ei = γi ei.

In other words, the first n eigenvalues λi of S are the same as the eigenvalues of 1
n−1ZZ> and their

corresponding eigenvectors are obtained as ei = Z>ui.
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This has a huge computational benefit in particular for the cases where the original data set is very high
dimensional and the number of observations n is much less than p.

set.seed(10)
n <- 5
p <- 8
N <- n*p
X<- matrix(sample(1:N, N, replace=FALSE), nrow=n, byrow=TRUE)
Z <- scale(X, center=TRUE, scale=FALSE)
#Find cov(X). You could also use cov(Z) or cov(X)
S <- t(Z)%*%Z/(n-1)
#eigenvalues of the covariance matrix
eigen(S)$value

## [1] 5.091027e+02 4.518035e+02 2.679258e+02 3.166797e+01 3.410605e-13
## [6] 5.332015e-14 1.720230e-14 2.752261e-15

#eigenvectors of the covariance matrix
eigen(S)$vectors

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] -0.1957053 3.228876e-01 -0.4188824 0.60488158 0.56222665 0.00000000
## [2,] 0.1471564 -5.557864e-01 -0.3958612 0.45750170 -0.41673198 -0.32776059
## [3,] -0.3668402 1.867140e-01 -0.2321313 -0.28659960 -0.09952769 -0.38530596
## [4,] -0.3714390 -5.488858e-01 -0.1028906 -0.01477059 0.12516520 0.63839328
## [5,] 0.1675007 4.726489e-01 -0.1160733 0.24333109 -0.56140927 0.54338367
## [6,] -0.1407832 -1.188520e-01 0.2638103 0.05057669 0.16138765 0.10430350
## [7,] 0.2332888 7.960938e-05 -0.7141753 -0.52828837 0.11743769 0.17041711
## [8,] 0.7518016 -1.148242e-01 0.1012167 0.03995424 0.36006335 0.03713899
## [,7] [,8]
## [1,] 0.000000000 0.00000000
## [2,] 0.009817105 0.14914322
## [3,] 0.716977826 0.14872211
## [4,] 0.310318609 -0.17447893
## [5,] 0.204530222 0.15357313
## [6,] -0.048751588 0.92444496
## [7,] -0.259731965 0.21481870
## [8,] 0.527142067 0.02940866

#Use SVD of Z and find the
#eigenvalues of S as diagonal elemenst of D^2/(n-1)
##Also eigen vectors as columns of V
svd(Z)$d^2/(n-1)

## [1] 5.091027e+02 4.518035e+02 2.679258e+02 3.166797e+01 3.385360e-30
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svd(S)$v

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] -0.1957053 -3.228876e-01 -0.4188824 -0.60488158 0.28836871 0.1251185
## [2,] 0.1471564 5.557864e-01 -0.3958612 -0.45750170 -0.09223384 0.1547098
## [3,] -0.3668402 -1.867140e-01 -0.2321313 0.28659960 0.23322032 -0.1686299
## [4,] -0.3714390 5.488858e-01 -0.1028906 0.01477059 -0.17885347 -0.5844178
## [5,] 0.1675007 -4.726489e-01 -0.1160733 -0.24333109 -0.67585603 -0.4364944
## [6,] -0.1407832 1.188520e-01 0.2638103 -0.05057669 -0.51212729 0.5440617
## [7,] 0.2332888 -7.960938e-05 -0.7141753 0.52828837 -0.21344051 0.2181507
## [8,] 0.7518016 1.148242e-01 0.1012167 -0.03995424 0.23946511 -0.2372969
## [,7] [,8]
## [1,] 0.1682144 0.43473159
## [2,] -0.3470440 -0.38800886
## [3,] -0.7792768 0.06664748
## [4,] 0.1846247 0.37727163
## [5,] -0.1368159 -0.09917749
## [6,] -0.2873663 0.50303430
## [7,] 0.1992798 0.15356539
## [8,] -0.2624793 0.47667577

#Now when n<p use ZZT=Zt(Z)/(n-1) instead of S
# and use the first n eigenvalues as those of S
# also use the t(Z)*eigenvectors(ZZt) as eigenvectors of S
ZZt <- Z%*%t(Z)/(n-1)
eigen(ZZt)$values[1:n]

## [1] 5.091027e+02 4.518035e+02 2.679258e+02 3.166797e+01 7.958079e-13

U<- eigen(ZZt)$vectors

t(Z)%*%U

## [,1] [,2] [,3] [,4] [,5]
## [1,] -8.831519 -13.726384126 13.712904 6.8078580 -4.352074e-14
## [2,] 6.640667 23.627224213 12.959259 5.1491180 -3.197442e-14
## [3,] -16.554253 -7.937462845 7.599254 -3.2256385 1.154632e-14
## [4,] -16.761783 23.333868779 3.368316 -0.1662410 -8.826273e-15
## [5,] 7.558738 -20.092937856 3.799878 2.7386575 -1.372513e-14
## [6,] -6.353068 5.052559633 -8.636327 0.5692336 2.220446e-16
## [7,] 10.527534 -0.003384301 23.379870 -5.9458121 2.309264e-14
## [8,] 33.926258 4.881330331 -3.313518 0.4496794 8.881784e-15

5.2 Matrix Approximation

Let Xn×p be an n×p data matrix such that rank(X) = r and a singular value decomposition of X = UDV>.
If λ1 ≥ λ2 ≥ . . . ≥ λr > 0 be the singular values of X, then one can find a rank q approximation of X that
minimizes

||X− X̂(q)||
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as follows

X̂n×p(q) =
q∑
i=1

λi

ui1...
uin

 [vi1 . . . vip
]

= λ1u1v>1 + . . .+ λquqv>q ,

where the variance in X accounted for each term in the above approximation is λ2
i . This has many

applications and one of the famous one is in image compression which is left as a project for you to
discover this more. Here we give an example to see how matrix approximation using SVD works:

mm<- matrix(
c(20.03, 2.06, 1.64, 2.71, 20.33,
17.59, 1.76, 20.09, 19.63, 18.45,
19.48, 1.44, 21.95, 22.01, 19.24,
21.42, 1.40, 0.32, 0.25, 23.30,
19.74, 20.63, 16.24, 2.22, 16.65,
18.45, 15.88, 16.91, 2.09, 18.52,
20.17, 18.80, 19.53, 1.88, 18.85,
20.13, 2.54, 2.72, 2.37, 22.18), nrow=8, byrow=TRUE)

plot.image <- function(img, m = ""){
image(t(img)[, nrow(img):1], col = gray.colors(100), main = m)
}

# This calualtes X.hat(q)
mm.app.q <- function(q, im=mm){
l <- svd(im)$d
u <- svd(im)$u
v <- svd(im)$v
a.m <- matrix(0, nrow=dim(im)[1], ncol=dim(im)[2])
for(i in 1:q){

a.m <- a.m + l[i]*(u[,i] %*% t(v[,i] ))
}
return(a.m)
}

par(mfrow=c(2, 2))
plot.image(mm, m="Original image")
plot.image(mm.app.q(1), m="Approximation with q=1")
plot.image(mm.app.q(2), m="Approximation with q=2")
plot.image(mm.app.q(3), m="Approximation with q=3")

6 Sampling distribution of sample eigenvalues

If X ∼ Np(µ,Σ) with Σ being a positive definite variance-covariance matrix, then

W = V>(X− µ) ∼ Np(0,Λ),

where
V = [e1|e2| . . . |ep]
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Figure 5: The original image and approximated ones using SVD.

and

Λ = diag(λ1, . . . , λp).

Let λ̂ = (λ̂1, . . . , λ̂p) and suppose n is large. Then

1.
√
n(λ̂− λ) ∼ Np(0, 2Λ2). So, the large sample 100(1− α)% confidence interval for λi is obtained as

follows:
λ̂i

1 + zα
2

√
2
n

≤ λi ≤
λ̂i

1− zα
2

√
2
n

.

2.
√
n(êi − ei) ∼ Np(0,Ei) where Ei = λi

∑
k 6=i

λk
(λk−λi)2 eke>k .

3. Each λ̂i is distributed independently of êi.

7 Real data applications of PCA and implementation in R

When you analyze real data, you can use the following criteria to choosing the number of PCs:

1. Retain the first q components which explain a large proportion of the total variation, say 70− 90%.

2. If the correlation matrix is analyzed, retain only those components with variances greater than one.

3. Examine a scree plot. This is a plot of the PC variances versus the PC number. The idea is to look
for an “elbow” which corresponds to the point after which the eigenvalues decrease more slowly.
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4. Consider whether the PC has a sensible and useful interpretation.

We pursue with a few examples:
Example 1: The Nutritional Value of Food Nutritional data from 961 food items are listed alphabetically
in the food.txt data set. The nutritional components of each food item are given by the following
seven variables: fat (grams), food energy (calories), carbohydrates (grams), protein (grams), cholesterol
(milligrams), weight (grams), and saturated fat (grams). Food items are listed according to very disparate
serving sizes, which include teaspoon, tablespoon, cup, loaf, slice, cake, cracker, package, piece, pie, biscuit,
muffin, spear, pat, wedge, stalk, cookie, and pastry. To equalize out the different types of servings for each
food, we first divide each variable by weight of the food item (which leaves us with 6 variables).

#put the food.txt data in the folder you run your R
dir <- getwd()
food.path <- paste(dir,"/food.txt", sep="")
food <-read.table(file=food.path, header = TRUE, sep = "")

#After dividing each variable by weight we get the follwing variables
food.adjusted<-food/food[, 6]
food<-food.adjusted[,-6]
str(food)

## ’data.frame’: 961 obs. of 6 variables:
## $ Fat.grams : num 0.1333 0.375 0.0353 0 0 ...
## $ Food.energy.calories: num 1.667 3.75 3.175 3.175 0.303 ...
## $ Carbohydrates.grams : num 0.1333 0.125 0.776 0.776 0.0303 ...
## $ Protein.grams : num 0 0 0.1411 0.1058 0.0303 ...
## $ Cholesterol.mg : num 0.133 0.25 0 0 0 ...
## $ Saturated.fat.grams : num 0.01333 0.0625 0.00353 0.00353 0 ...

Because of wide variations in
variable scales, each variable is standardized by subtracting its mean and dividing the result by its standard
deviation.

food <- scale(food)
summary(food)

## Fat.grams Food.energy.calories Carbohydrates.grams Protein.grams
## Min. :-0.5853 Min. :-1.1641 Min. :-0.9538 Min. :-0.7779
## 1st Qu.:-0.5853 1st Qu.:-0.8529 1st Qu.:-0.7646 1st Qu.:-0.6852
## Median :-0.4238 Median :-0.2124 Median :-0.4074 Median :-0.4073
## Mean : 0.0000 Mean : 0.0000 Mean : 0.0000 Mean : 0.0000
## 3rd Qu.: 0.1019 3rd Qu.: 0.5971 3rd Qu.: 0.5767 3rd Qu.: 0.2752
## Max. : 4.5835 Max. : 3.4981 Max. : 3.0527 Max. : 8.7527
## Cholesterol.mg Saturated.fat.grams
## Min. :-0.37895 Min. :-0.5620
## 1st Qu.:-0.37895 1st Qu.:-0.5620
## Median :-0.37895 Median :-0.4411
## Mean : 0.00000 Mean : 0.0000
## 3rd Qu.: 0.05007 3rd Qu.: 0.1539
## Max. :18.16991 Max. : 7.1068
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In R, PCA can be done using the functions princomp() and prcomp() (both contained in the R package
stats). Here we use princomp() and in the next example we show how PCA can be done using prcomp().

1. The princomp() function carries out PCA via an eigendecomposition of the sample covariance matrix
S.

2. When the variables are on very different scales, PCA is usually carried out on the correlation matrix.
These components are not equal to those derived from S.

A PCA of the transformed data yields six principal components ordered by decreasing variances, which by
using summary() we can get a very good understanding of each PC, its standard deviation, proportion of
the variance in the original data explained by each PC, etc. For example, below we see that the first three
principal components, PC1, PC2, and PC3, account for more than 83.3 percent of the total variance in
the data.

fit <- princomp(food, cor=TRUE)
summary(fit)

## Importance of components:
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## Standard deviation 1.6274498 1.1533146 1.0100127 0.8246633 0.51626027
## Proportion of Variance 0.4414322 0.2216891 0.1700209 0.1133449 0.04442078
## Cumulative Proportion 0.4414322 0.6631213 0.8331422 0.9464871 0.99090792
## Comp.6
## Standard deviation 0.233564773
## Proportion of Variance 0.009092084
## Cumulative Proportion 1.000000000

The results of the analysis using princomp() is represented by a list containing coefficients (loading)
defining each component, the PC scores, etc. The coefficients (loading) for the first 3 PCs are obtained
below. Notice that PC1 puts little weight on carbohydrates, and PC2 puts little weight on fat and saturated
fat.

fit$loadings[, 1:3] # pc loadings

## Comp.1 Comp.2 Comp.3
## Fat.grams 0.55723936 0.09870077 0.2750890
## Food.energy.calories 0.53615066 0.35676646 -0.1370762
## Carbohydrates.grams -0.02455362 0.67163163 -0.5684779
## Protein.grams 0.23522713 -0.37384298 -0.6388770
## Cholesterol.mg 0.25250455 -0.52130441 -0.3256120
## Saturated.fat.grams 0.53135067 -0.01923360 0.2611169

It is easy to verify that each loading is unique up to a sign flip. Also, note that

e.1 <- fit$loadings[,1]
e.2 <- fit$loadings[,2]
#Norm of loadings
e.1%*%e.1
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## [,1]
## [1,] 1

#PCs are perpendicular
e.1%*%e.2

## [,1]
## [1,] 1.734723e-17

We can re-scale coefficients (loading) so that coefficients for the most important components are larger
than those for the less in important components. This can be done by setting e?j =

√
λjej for which

e?>e? = λj . For example, the re-scaled loading for PC1 are calculated as

(scaled.e1 <- e.1 * fit$sdev[1])

## Fat.grams Food.energy.calories Carbohydrates.grams
## 0.90687912 0.87255831 -0.03995979
## Protein.grams Cholesterol.mg Saturated.fat.grams
## 0.38282035 0.41093848 0.86474657

plot(fit,type="lines", pch=20) # scree plot

fit
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Figure 6: Variance explained by each PC

The scatter plot of the first two PCs is given below. The scatter plot appears to show a number of interesting
features. Notice the almost straight-line edge to the plotted points at the upper left-hand corner.

biplot(fit, expand = 1.4,
col=c("red","blue"),
cex = c(0.35, 0.6),
xlim = c(-1.5, 8),
ylim = c(-11,4),
scale = FALSE )
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Figure 7: The scatterplot of the first two principal components

We also can identify various groups of points in this display, where the food items in each group have been
ordered by magnitude of that nutritional component, starting at the largest value. For example, by looking
at the raw data we see that the observations 866 (raw egg yolk), 49 (chicken liver), 861 (beef liver), 861
(fried egg), 833 (hard-cooked egg), 864 (poached egg), and 315 (scrambled egg) are leading items in PC1
which is reflecting Cholesterol.

One can see that Protein is associated with dry gelatin, raw seaweed, yeast, and Parmesan cheese. Saturated
fat has the leading foods such as butter, lard, bitter chocolate, coconut, cooking fat, and cheddar cheese.
etc. Most of these points are identified in the scatter plot, but some are covered too well to be displayed
clearly. We see that food item raw egg yolk is an outlier along an imaginary cholesterol axis and butter
and lard are outliers along an imaginary saturated-fat axis.

Example 2: In this example we provide an application by working with a data set, named USArrests,
that contains the number of arrests per 100,000 residents for murder, assault, and rape for each of the 50
states in US in 1973. The data set also contains the percentage of people in the state who live in an urban
area. The data set is pre-loaded in R, so you can load it directly as a data frame with 50 observations on
4 variables.

• Murder: numeric Murder arrests (per 100,000)
• Assault: numeric Assault arrests (per 100,000)
• UrbanPop: numeric Percent urban population
• Rape: numeric Rape arrests (per 100,000)

The rows of the data set contain the 50 states in alphabetical order and the columns contain the four
variables.
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data(USArrests)
help(USArrests)

You can look at the names of variables contained in this data object (or data frame, as R calls them) by
typing:

names(USArrests)

## [1] "Murder" "Assault" "UrbanPop" "Rape"

head(USArrests)

## Murder Assault UrbanPop Rape
## Alabama 13.2 236 58 21.2
## Alaska 10.0 263 48 44.5
## Arizona 8.1 294 80 31.0
## Arkansas 8.8 190 50 19.5
## California 9.0 276 91 40.6
## Colorado 7.9 204 78 38.7

Let us examine the data first. The average of each variable is given by

apply(USArrests, 2, mean)

## Murder Assault UrbanPop Rape
## 7.788 170.760 65.540 21.232

Also, the variance-covariance matrix is obtained as follows:

(S<-cov(USArrests))

## Murder Assault UrbanPop Rape
## Murder 18.970465 291.0624 4.386204 22.99141
## Assault 291.062367 6945.1657 312.275102 519.26906
## UrbanPop 4.386204 312.2751 209.518776 55.76808
## Rape 22.991412 519.2691 55.768082 87.72916

Now, we are ready to apply a PCA on this data set. Here we use prcomp() that instead of performing
PCA via an eigendecomposition of the covariance matrix (as in princomp()), it does a singular value
decomposition of the (centered and possibly scaled) data matrix. By default the prcomp() function centers
the variable to have mean zero. By using the option scale=TRUE, one can scale the variables to have
standard deviation one. This is what we use in this example:

fit <- prcomp(USArrests, scale=TRUE)
summary(fit) # print variance accounted for
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## Importance of components:
## PC1 PC2 PC3 PC4
## Standard deviation 1.5749 0.9949 0.59713 0.41645
## Proportion of Variance 0.6201 0.2474 0.08914 0.04336
## Cumulative Proportion 0.6201 0.8675 0.95664 1.00000

Let us look at the output of prcomp():

names(fit)

## [1] "sdev" "rotation" "center" "scale" "x"

fit

## Standard deviations (1, .., p=4):
## [1] 1.5748783 0.9948694 0.5971291 0.4164494
##
## Rotation (n x k) = (4 x 4):
## PC1 PC2 PC3 PC4
## Murder -0.5358995 0.4181809 -0.3412327 0.64922780
## Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
## UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773
## Rape -0.5434321 -0.1673186 0.8177779 0.08902432

When we matrix-multiply the data matrix matrix by fit$rotation, it gives the PC scores. Alternatively
you can use prcomp()$x that is a matrix where its columns are the PC scores. For example, the first
column will give the scores of PC1, which we show only a few of them below.

dim(fit$x)

## [1] 50 4

head(fit$x[,1])

## Alabama Alaska Arizona Arkansas California Colorado
## -0.9756604 -1.9305379 -1.7454429 0.1399989 -2.4986128 -1.4993407

We have also provided the Scree plot and a plot showing the proportion of the total variance in the data
set that is explained by the first k PCs.

par(mfrow=c(1, 2))
plot(fit,type="lines", pch=20, main="") # scree plot
plot(summary(fit)$importance[3,],

type="b", pch=20, col="green",
ylab="Proportion of Variance explained")

Also, we can obtain the loading of the PCs using:
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Figure 8: On the left we have a Scree plot to show the variance explained by each PC. On the right we
have the plot of the proportion of the variance explained by PCs

fit$rotation

## PC1 PC2 PC3 PC4
## Murder -0.5358995 0.4181809 -0.3412327 0.64922780
## Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
## UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773
## Rape -0.5434321 -0.1673186 0.8177779 0.08902432

By checking the weights of the first two principal components, we see that:

• The first loading vector places approximately equal weight on Assault, Murder, and Rape, with much
less weight on UrbanPop. Hence this component roughly corresponds to a measure of overall rates
of serious crimes.

• The second loading vector places most of its weight on UrbanPop and much less weight on the other
three features. Hence, this component roughly corresponds to the level of urbanization of the state.

The below biplot shows that 50 states mapped according to the 2 principal components. The vectors of
the PCA for 4 variables are also plotted.

biplot(fit,
expand = 0.9,
col=c("red","blue"),
cex=c(0.5, 0.75),
xlab="PC1 scores",
ylab="PC2 scores")

The large positive scores on the first component, such as California, Nevada and Florida, have high crime
rates, while states like North Dakota, with negative scores on the first component, have low crime rates.
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Figure 9: Biplot showing 50 states mapped according to the 2 principal components.

California also has a high score on the second component, indicating a high level of urbanization, while
the opposite is true for states like Mississippi. States close to zero on both components, such as Indiana,
have approximately average levels of both crime and urbanization.
In the following example we try to perform most of the calculation by writing functions. This is not
necessary and you can use packages.
Example 3: We have data on blood pressure, age, weight, body surface area, duration of hypertension,
basal pulse, stress index for 20 individuals with high blood pressure.

BP.data <- read.table(file="bp.txt", header=TRUE)[,-1]
BP.data

## BP Age Weight BSA Dur Pulse Stress
## 1 105 47 85.4 1.75 5.1 63 33
## 2 115 49 94.2 2.10 3.8 70 14
## 3 116 49 95.3 1.98 8.2 72 10
## 4 117 50 94.7 2.01 5.8 73 99
## 5 112 51 89.4 1.89 7.0 72 95
## 6 121 48 99.5 2.25 9.3 71 10
## 7 121 49 99.8 2.25 2.5 69 42
## 8 110 47 90.9 1.90 6.2 66 8
## 9 110 49 89.2 1.83 7.1 69 62
## 10 114 48 92.7 2.07 5.6 64 35
## 11 114 47 94.4 2.07 5.3 74 90
## 12 115 49 94.1 1.98 5.6 71 21
## 13 114 50 91.6 2.05 10.2 68 47
## 14 106 45 87.1 1.92 5.6 67 80
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## 15 125 52 101.3 2.19 10.0 76 98
## 16 114 46 94.5 1.98 7.4 69 95
## 17 106 46 87.0 1.87 3.6 62 18
## 18 113 46 94.5 1.90 4.3 70 12
## 19 110 48 90.5 1.88 9.0 71 99
## 20 122 56 95.7 2.09 7.0 75 99

n <- 20

Suppose we want to regress BP on other variables.

model1 <- lm(BP~ Age + Weight + BSA + Dur + Pulse+ Stress, data=BP.data)
summary(model1)

##
## Call:
## lm(formula = BP ~ Age + Weight + BSA + Dur + Pulse + Stress,
## data = BP.data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.93213 -0.11314 0.03064 0.21834 0.48454
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -12.870476 2.556650 -5.034 0.000229 ***
## Age 0.703259 0.049606 14.177 2.76e-09 ***
## Weight 0.969920 0.063108 15.369 1.02e-09 ***
## BSA 3.776491 1.580151 2.390 0.032694 *
## Dur 0.068383 0.048441 1.412 0.181534
## Pulse -0.084485 0.051609 -1.637 0.125594
## Stress 0.005572 0.003412 1.633 0.126491
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.4072 on 13 degrees of freedom
## Multiple R-squared: 0.9962, Adjusted R-squared: 0.9944
## F-statistic: 560.6 on 6 and 13 DF, p-value: 6.395e-15

By checking the fitted regression model for multicollinearity using

library(car)

## Loading required package: carData

vif(model1)

## Age Weight BSA Dur Pulse Stress
## 1.762807 8.417035 5.328751 1.237309 4.413575 1.834845

27



We observe that some of the variance inflation factors (VIF) are quite large. Hence, we suspect that the
model has multicollinearity. Let’s check the correlations between covariates.

X= as.matrix(BP.data[2:7]) # exclude the response variable!!
round(cor(X),2)

## Age Weight BSA Dur Pulse Stress
## Age 1.00 0.41 0.38 0.34 0.62 0.37
## Weight 0.41 1.00 0.88 0.20 0.66 0.03
## BSA 0.38 0.88 1.00 0.13 0.46 0.02
## Dur 0.34 0.20 0.13 1.00 0.40 0.31
## Pulse 0.62 0.66 0.46 0.40 1.00 0.51
## Stress 0.37 0.03 0.02 0.31 0.51 1.00

To predict BP using the covariates, we would like to use PCA first and then use a few PCs to fit a PCR
(principal component regression model). First, we obtain the sample mean vector and sample covariance
matrix of X:

x.bar <- apply(X,2,mean)
x.bar

## Age Weight BSA Dur Pulse Stress
## 48.600 93.090 1.998 6.430 69.600 53.350

S <- cov(X)
S

## Age Weight BSA Dur Pulse Stress
## Age 6.2526316 4.3747368 0.12915789 1.84421053 5.8842105 3.414737e+01
## Weight 4.3747368 18.4462105 0.51308421 1.84873684 10.7694737 5.472105e+00
## BSA 0.1291579 0.5130842 0.01862737 0.03822105 0.2412632 9.336842e-02
## Dur 1.8442105 1.8487368 0.03822105 4.60221053 3.2757895 2.479421e+01
## Pulse 5.8842105 10.7694737 0.24126316 3.27578947 14.4631579 7.141053e+01
## Stress 34.1473684 5.4721053 0.09336842 24.79421053 71.4105263 1.375397e+03

round(S, 3)

## Age Weight BSA Dur Pulse Stress
## Age 6.253 4.375 0.129 1.844 5.884 34.147
## Weight 4.375 18.446 0.513 1.849 10.769 5.472
## BSA 0.129 0.513 0.019 0.038 0.241 0.093
## Dur 1.844 1.849 0.038 4.602 3.276 24.794
## Pulse 5.884 10.769 0.241 3.276 14.463 71.411
## Stress 34.147 5.472 0.093 24.794 71.411 1375.397

As we observe, the scales are quite different, suggesting that we may be better off using R to get the PCs
nevertheless, let’s continue with S. We will redo the analysis with R later!. To get the PCs, first we find
the eigenvalues and eigenvectors

28



Val <- eigen(S)$values
Vec <- eigen(S)$vectors

We have 6 PCs which are linear combinations of X1, . . . , X6 with weights given by each eigenvector. We
can obtain the data for PCs using:

W <- X # just to create a data matrix of the same size of X

# now fill in the entries by calculating sample PCs

for(i in 1:6){
for(j in 1:20){
W[j,i] <- Vec[,i] %*% ( X[j,] -x.bar) # centered PCs

}}

colnames(W) <- paste("W", 1:6, sep="")
# Principal Components have zero correlation:

plot(data.frame(W))
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Figure 10: Scatterplot of PCs of centered variables

round(cor(W),3)

## W1 W2 W3 W4 W5 W6
## W1 1 0 0 0 0 0
## W2 0 1 0 0 0 0
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## W3 0 0 1 0 0 0
## W4 0 0 0 1 0 0
## W5 0 0 0 0 1 0
## W6 0 0 0 0 0 1

Notice that centered Principal Components have zero mean:

round(apply(W, 2, mean),3)

## W1 W2 W3 W4 W5 W6
## 0 0 0 0 0 0

How many components should we keep? To this end, we can use the scree plot:

plot(Val, type="b") # suggests keeping the first PC only!
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Figure 11: Variance of each PC

Also, it is easy to calculate the proportion of variation explained by each PC:

round(Val/sum(Val),3) # 97.3 % of the sample variation in X is explained by the first PC.

## [1] 0.973 0.019 0.004 0.002 0.002 0.000

If you like, you can use built-in functions in R for a summary:

summary(prcomp(X))

## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6
## Standard deviation 37.1548 5.25454 2.24839 1.83160 1.63689 0.05908
## Proportion of Variance 0.9727 0.01946 0.00356 0.00236 0.00189 0.00000
## Cumulative Proportion 0.9727 0.99218 0.99575 0.99811 1.00000 1.00000

Now let’s run regression with the first PC as the explanatory variable:
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PC.model <- lm(BP.data$BP ~ W[,1])
summary(PC.model) # W1 is not found significant! adj.R^2 is too low (negative!)

##
## Call:
## lm(formula = BP.data$BP ~ W[, 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.6505 -3.3268 0.0889 2.2441 9.8861
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 114.00000 1.22926 92.739 <2e-16 ***
## W[, 1] -0.02471 0.03394 -0.728 0.476
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 5.497 on 18 degrees of freedom
## Multiple R-squared: 0.02859, Adjusted R-squared: -0.02538
## F-statistic: 0.5297 on 1 and 18 DF, p-value: 0.4761

However, if we add W2 (or even more PCs) we would find them significant:

PC.model.2 <- lm(BP.data$BP ~ W[,1]+ W[,2])
summary(PC.model.2) # W1 is not significant!

##
## Call:
## lm(formula = BP.data$BP ~ W[, 1] + W[, 2])
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2859 -0.8294 -0.0579 0.8103 3.3058
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 114.00000 0.36609 311.400 < 2e-16 ***
## W[, 1] -0.02471 0.01011 -2.444 0.0257 *
## W[, 2] -0.97474 0.07148 -13.636 1.39e-10 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 1.637 on 17 degrees of freedom
## Multiple R-squared: 0.9186, Adjusted R-squared: 0.9091
## F-statistic: 95.96 on 2 and 17 DF, p-value: 5.482e-10

One can also check the importance of each variable in the first two PCs:
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round(Vec[,1],3) # Stress level dominates the first PC

## [1] -0.025 -0.005 0.000 -0.018 -0.052 -0.998

round(Vec[,2],3) # weight and pulse contribute to the second PC more than other variables.

## [1] -0.257 -0.779 -0.021 -0.118 -0.558 0.041

Let us now, redo the whole analysis using the sample correlation coefficient matrix.

Z=X
for(i in 1:6){
Z[,i] <- (X[,i]-x.bar[i])/sqrt(diag(S)[i])
}

# obtain correlation matrix
R <- cor(X)
cov(Z) # they should be the same!

## Age Weight BSA Dur Pulse Stress
## Age 1.0000000 0.40734926 0.37845460 0.3437921 0.6187643 0.36822369
## Weight 0.4073493 1.00000000 0.87530481 0.2006496 0.6593399 0.03435475
## BSA 0.3784546 0.87530481 1.00000000 0.1305400 0.4648188 0.01844634
## Dur 0.3437921 0.20064959 0.13054001 1.0000000 0.4015144 0.31163982
## Pulse 0.6187643 0.65933987 0.46481881 0.4015144 1.0000000 0.50631008
## Stress 0.3682237 0.03435475 0.01844634 0.3116398 0.5063101 1.00000000

We obtain eigenvalues and eigenvectors of R

Val.new <- eigen(R)$values
round(Val.new ,2)

## [1] 3.01 1.39 0.71 0.52 0.31 0.07

Vec.new <- eigen(R)$vectors
rownames(Vec.new) <- colnames(X)
colnames(Vec.new) <- c("PC1", "PC2", "PC3", "PC4", "PC5", "PC6")
round(Vec.new ,2)

## PC1 PC2 PC3 PC4 PC5 PC6
## Age -0.43 0.18 0.15 0.84 0.19 -0.10
## Weight -0.47 -0.44 -0.03 -0.19 -0.14 -0.73
## BSA -0.42 -0.49 0.00 -0.17 0.53 0.52
## Dur -0.29 0.39 -0.86 -0.10 0.10 0.00
## Pulse -0.51 0.13 0.16 -0.11 -0.72 0.41
## Stress -0.26 0.60 0.45 -0.45 0.37 -0.17

Also, sample PC values are obtained below:
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W.new <- X # just to create a data matrix of the same size of X
colnames(W.new) = c("PC1", "PC2", "PC3", "PC4", "PC5", "PC6")

# now fill in the entries by calculating sample PCs

for(i in 1:6){ # PC’s
for(j in 1:20){
W.new[j,i] <- Vec.new[,i] %*% Z[j,]
# no need to center when using normalized PCCs

}}

Note that PCs have correlation zero.

plot(data.frame(W.new))
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Figure 12: Scatterplots of PCs

round(cor(W.new),3)

## PC1 PC2 PC3 PC4 PC5 PC6
## PC1 1 0 0 0 0 0
## PC2 0 1 0 0 0 0
## PC3 0 0 1 0 0 0
## PC4 0 0 0 1 0 0
## PC5 0 0 0 0 1 0
## PC6 0 0 0 0 0 1
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Again, How many components should we keep?

plot(Val.new, type="b", pch=19, xlab="",ylab="Variances")
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Figure 13: Variance explained by each PC

# suggests keeping the first 4 or 5 PCs.

Proportion of variation explained by each PC can also be obtained via screeplot() in R:

round(Val.new/sum(Val.new),3)

## [1] 0.502 0.231 0.118 0.086 0.051 0.011

summary( prcomp(Z))

## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6
## Standard deviation 1.7357 1.1781 0.8419 0.71993 0.55411 0.25528
## Proportion of Variance 0.5021 0.2313 0.1181 0.08638 0.05117 0.01086
## Cumulative Proportion 0.5021 0.7335 0.8516 0.93797 0.98914 1.00000

screeplot(prcomp(Z), npcs = 6, type = "lines", pch=20)

We can use these to perform a regression analysis with all standardized PCs as the explanatory variables

PC.model.new.1 <- lm(BP.data$BP ~ W.new[,1] +
W.new[,2] + W.new[,3] + W.new[,4] + W.new[,5]+ W.new[,6])

summary(PC.model.new.1) # W2 and W5 seem not to be significant

##
## Call:
## lm(formula = BP.data$BP ~ W.new[, 1] + W.new[, 2] + W.new[, 3] +
## W.new[, 4] + W.new[, 5] + W.new[, 6])
##
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prcomp(Z)
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Figure 14: Scree plot to variance explained by each PC

## Residuals:
## Min 1Q Median 3Q Max
## -0.93213 -0.11314 0.03064 0.21834 0.48454
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 114.00000 0.09106 1251.934 < 2e-16 ***
## W.new[, 1] -2.87295 0.05382 -53.376 < 2e-16 ***
## W.new[, 2] -1.63040 0.07930 -20.560 2.68e-11 ***
## W.new[, 3] 0.04409 0.11097 0.397 0.6976
## W.new[, 4] 0.52438 0.12977 4.041 0.0014 **
## W.new[, 5] 0.34485 0.16860 2.045 0.0616 .
## W.new[, 6] -3.09367 0.36597 -8.453 1.22e-06 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.4072 on 13 degrees of freedom
## Multiple R-squared: 0.9962, Adjusted R-squared: 0.9944
## F-statistic: 560.6 on 6 and 13 DF, p-value: 6.395e-15

Let’s remove W ∗3 and W ∗5

PC.model.new.2 = lm(BP.data$BP ~ W.new[,1] + W.new[,2] + W.new[,4] + W.new[,6])
summary(PC.model.new.2)

##
## Call:
## lm(formula = BP.data$BP ~ W.new[, 1] + W.new[, 2] + W.new[, 4] +
## W.new[, 6])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.98824 -0.20787 0.04648 0.23649 0.58000
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 114.00000 0.09791 1164.355 < 2e-16 ***
## W.new[, 1] -2.87295 0.05787 -49.642 < 2e-16 ***
## W.new[, 2] -1.63040 0.08526 -19.122 6.04e-12 ***
## W.new[, 4] 0.52438 0.13953 3.758 0.0019 **
## W.new[, 6] -3.09367 0.39349 -7.862 1.07e-06 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.4379 on 15 degrees of freedom
## Multiple R-squared: 0.9949, Adjusted R-squared: 0.9935
## F-statistic: 726.5 on 4 and 15 DF, p-value: < 2.2e-16

Note that removing PCs from the model does not change the coefficients! We can check the importance of
each variable in standardized PCs:

round(Vec.new[,1],3) # all variables contribute to the first PC

## Age Weight BSA Dur Pulse Stress
## -0.430 -0.472 -0.425 -0.290 -0.509 -0.263

round(Vec.new[,2],3) # stress vs (weight and BSA)

## Age Weight BSA Dur Pulse Stress
## 0.183 -0.440 -0.494 0.389 0.135 0.599

round(Vec.new[,3],3) # Dur dominates the third PC (perhaps vs stress)

## Age Weight BSA Dur Pulse Stress
## 0.153 -0.033 -0.004 -0.864 0.164 0.450

round(Vec.new[,4],3) # Age dominates the fourth PC (perhaps vs stress)

## Age Weight BSA Dur Pulse Stress
## 0.844 -0.193 -0.166 -0.097 -0.108 -0.449

round(Vec.new[,5],3) # Pulse vs (BSA and stress)

## Age Weight BSA Dur Pulse Stress
## 0.190 -0.140 0.527 0.095 -0.719 0.374

round(Vec.new[,6],3) # Weight vs (BSA and pulse)

## Age Weight BSA Dur Pulse Stress
## -0.100 -0.725 0.519 -0.001 0.409 -0.166
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The correlations between PCs and variables also indicate importance:

## W1 W2 W3 W4 W5 W6
## X1 -0.7455676 0.2155651 0.128832599 0.60772061 0.10532396 -0.0254015989
## X2 -0.8188220 -0.5189090 -0.027604490 -0.13863089 -0.07762341 -0.1850891720
## X3 -0.7371247 -0.5825774 -0.003015128 -0.11941094 0.29228069 0.1324941525
## X4 -0.5037900 0.4577906 -0.727318923 -0.06968866 0.05266996 -0.0002002768
## X5 -0.8832188 0.1587580 0.138214375 -0.07759309 -0.39834375 0.1044927419
## X6 -0.4573168 0.7057680 0.378544379 -0.32345613 0.20746323 -0.0423340469

8 Exercises

1. Consider the following sample covariance matrix:

S =
(

5 2
2 2

)
.

Without using R and by calculations with hand

(a) Determine the sample principal components (PCs) from S

(b) Calculate the proportion of the total sample variance explained by the first PC.

(c) Convert the covariance matrix to a correlation matrix and determine it PCs.

(d) Compute the correlations between the original variables and the two PCs obtained in (c).

2. Find the principal components and the proportion of the total variance explained by each component
when the covariance matrix is

σ =

 σ2 σ2ρ 0
σ2ρ σ2 σ2ρ
0 σ2ρ σ2

 − 1√
2
< ρ <

1√
2
.

3. Multivariate methods are often used in the analysis of genomic data. In particular, PCA and Cluster
Analysis are popular tools. In this exercise, we illustrate these techniques on the NCI60 cancer
cell line microarray data that are contained in the R package ISLR. The format of NCI60 is a list
containing two elements: data and labs, where data is a 64 by 6380 matrix of the 6380 expression
measurements on 64 cancer cell lines and labs is a vector listing the cancer types for the 64 cell lines.

(a) Run the following R code:

library(ISLR)
nci.labs <- NCI60$labs
nci.data <- NCI60$data
dim(nci.data)
length(nci.labs)

(b) Examine the cancer types for the cell lines.
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(c) Use the function prcomp() to perform PCA on the nci.data after scaling the variables (genes) to
have standard deviation one.

(d) Verify that the sum of squares of the elements of the vectors of coefficients (loading) of the first and
second principal component, respectively, is equal to one and that both vectors are orthogonal to
each other.

(e) The following function can be used to assign a color to each of the 64 cell lines, based on the cancer
type to which it corresponds. Note that the rainbow() function takes as its argument a positive
integer and returns a vector containing that number of distinct colors. Use the function below to
plot the scores of the first three principal components (PCs).

Cols <- function(vec){
cols <- rainbow(length(unique(vec)))
return(cols[as.numeric(as.factor(vec))])

}

(f) By making use of the summary() method for a prcomp object, obtain a summary of the proportion
of variance explained (PVE) by the PCs. Scale the loading on the first two PCs so that the elements
of the rescaled vectors represent the correlations between the variables and the first and second PC,
respectively.

(g) Provide a plot of the PVE of each component (i.e. a scree plot) and a plot of the cumulative PVE of
each component.

4. To simplify interpretation of principal components, rotation can be used with the objective of making
the rotated components as simple as possible to interpret. However, after rotation, one or both of
the properties of PCA, that is, the orthogonality of loading vectors and the uncorrelatedness of
component scores, disappears. Verify this statement using a simulation in R.

5. (a) Let X and Y be jointly normally distributed and uncorrelated random variables. Are X and Y
independent? Justify your answer!

(b) Now suppose that X and Y are not jointly normally distributed but each one alone is marginally
normally distributed, and X and Y are uncorrelated. Can you make a statement whether X and Y
are independent? Justify your answer!

6. Download the file digits.Rdata from the course website and load it into your R session
with load("digits.Rdata"). Now you should have a matrix threes that has dimension
658 × 256. (This data set was taken from the data page on http://www-stat.stanford.
edu/~tibs/ElemStatLearn/.) Each row of the matrix corresponds to an image of a “3” that was
written by a different person. Hence each row vector is of length 256, corresponding to a 16 by 16
pixels image that has been unraveled into a vector, and each pixel takes gray scale values between
−1 and 1. You can use the following function to show any of these threes:

plot.digit = function(x,zlim=c(-1,1)) {
cols = gray.colors(100)[100:1]
image(matrix(x,nrow=16)[,16:1],col=cols,

zlim=zlim,axes=FALSE)
}
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For example you can type plot.digit(threes[1,]).

(a) Compute the principal component directions and principal component scores of threes. Plot the
first two principal component scores (the x-axis being the first score and the y-axis being the second
score). Note that each point in this plot corresponds to an image of a “3”.

(b) For each of the first two principal component scores, compute the following percentiles:
5%, 25%, 50%, 75%, 95%. Draw these values as vertical and horizontal lines on top of your
plot (i.e., vertical for the percentiles of the first principal component score, and horizontal for those
of the second.). You can use quantile for the percentiles, and abline to draw the lines

(c) Now you want to identify a point (i.e., an image of a “3”) close to each of the vertices of the grid on
your plot. This can be done by using the identify function with n=25, which allows you to click
on the plot 25 times (since there are 25 vertices). Each time you click, it will print the index of the
point that is closest to your click’s location. Make sure you click left-to-right, and top-to-bottom, and
record the indices in that order. (Note: although the identify function returns a vector of indices,
and it claims that this vector is ordered by the order of your clicks, it actually gives them in sorted
order. This isn’t what you want—you want them in the order that you clicked, so you may have to
build this vector manually.)

(d) Plot all of the images of “3”s that you picked out in part (c), in an order that corresponds to the
vertices of the grid. For example, if you saved the vector of indices that you built in (c) as inds, and
you built them by clicking left-to-right and top-to-bottom as instructed, this can be done with:

par(mfrow=c(5,5)) # allow for 5 x 5 plots
par(mar=c(0.2,0.2,0.2,0.2)) # set small margins
for (i in inds) {

plot.digit(threes[i,])
}

(e) Looking at these digits, what can be said about the nature of the first two principal component
scores? (The first principal component score is increasing as you move from left-to-right in any of
the rows. The second principal component score is decreasing as you move from top-to-bottom in
any of the columns.) In other words, explain what changes with respect to changes in each of the
component scores.

(f) Plot the proportion of variance explained by the first k principal component directions, as a function
of k = 1, . . . , 256. How many principal component directions would we need to explain 50% of the
variance? How many to explain 90% of the variance?

7. In a study of the anatomy of the North America marten, four bone dimensions were measured on 92
male specimens. The following wing bone dimensions were of particular interest:

X1 : Humerus length

X2: Femur length

X3: Humerus width

X4: Femur width

From the gathered data, the following sample covariance and correlation matrices were obtained:
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S =


1.1544 1.0330 0.9109 0.7993
1.0330 1.2100 0.7056 0.7953
0.9109 0.7056 2.0381 1.4083
0.7993 0.7953 1.4083 2.0277

 and R =


1.0000 0.8740 0.5939 0.7993
0.8740 1.0000 0.4493 0.7953
0.5939 0.4493 1.0000 1.4083
0.5224 0.5077 0.6928 1.0000


IN an attempt to summarize and better interpret their findings, the people involved in this study carried
through a PCA working from the sample covariance matrix S.

(a) In this case, a principal components analysis carried from either S or R can be seen to yield fairly
similar results. Why do you think this is?

(b) Still, the results would differ somehow. In what way do you expect them to differ?

(c) Perform a PCA using both S and R and write a report. Justify why retaining 2 or 3 principal
components would be reasonable in summarizing these data. Give at least 2 different arguments.

(d) Interpret the first three principal components.
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