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Agenda
• Introduction to Smoothing Methods

• Polynomial Regression
• Basis Expansion

• Splines
• Cubic, Natural, B, and the underlying geometry/linear algebra

• Regularization Methods
• Shrinkage Estimators: Ridge, LASSO, Elastic Net
• Smoothing Splines

• Local Weighting
• Delta Neighbourhood and KNN
• Kernel Smoothing
• Local Smoothing and LOESS

• Multidimensional Smoothing (if time permits)
• Tensor Product Bases
• Thin-plate Splines
• Additive Spline Model
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Housekeeping Stu↵

• Format: This part of the workshop is mostly applied with
minimal theoretical content. More details can be found in the
references below.

• Additional Resources:
• An Introduction to Statistical Learning by James et al. : Ythe

book, lectures by the authors, codes, errata, etc.
under this link.

• The elements of Statistical Learning by Hastie, Tibshirani, and
Friedman : the book is available here, and more stu↵ (codes,
data, errata, etc.) can be found here.

• Statistical Learning with Sparsity by Hastie, Tibshirani, and
Wainwright available here.

• Machine Learning: A Probabilistic Perspective by Kevin
Murphy ! (has a computer science approach)

• A Practical Guide to Splines by Carl de Boor
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https://www.statlearning.com/
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/
https://web.stanford.edu/~hastie/StatLearnSparsity/index.html


Geometry of Y |(X = x) = µ(x) + e
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Revisiting the Geometry of Y |(X = x) = µ(x) + e

In polynomial regression, the model

µ(x) = b0 + b1x + b2x
2 + ...+ bpx

p

is a linear combination of polynomial terms of x .

However, µ(x) can be expressed as some (unknown) linear
combination of other functions, e.g.

µ(x) = q1g1(x) + q2g2(x) + q3g3(x) + q4g4(x), qi 2 R

where g1(x) = 1, g2(x) = x , g3(x) = sin(x), and g4(x) = log(x).
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Revisiting the Geometry of Y |(X = x) = µ(x) + e

• All linear combinations of these four specific functions
g1, · · · , g4 form a subspace.

• The functions g1, · · · , g4 are generators of that subspace.

• If the generators are linearly independent of one another
(orthogonal) then these functions also form a set of
orthogonal basis functions for that subspace.

• The linear model asserts that µ(x) lies in that subspace,
subspace of dimension equal to the number of basis functions
which define it.
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An Infinite-Dimensional Basis

• One famous/easy example of basis functions is the Taylor
expansion. For example, recall the Taylor expansion of ex

about the point x0 = 0, i.e.

ex = 1+ x +
1

2!
x2 +

1

3!
x3 +

1

4!
x4 + · · ·

• Interpretation: exponential function is a known (infinite)
linear combination of all the (infinitely many) simple
polynomials in x .

• These polynomials form an infinite-dimensional basis for the
space of real-valued functions of a real-valued variable.
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A Model Based on an Infinite-Dimensional Basis

• More approperiately, we should write

ex = 1+ x +
1

2!
x2 +

1

3!
x3 +

1

4!
x4 + R(x)

where R(x) is a o(x4) function, i.e. limx!0
R(x)
x4 = 0.

• Hence, an approximation of ex is

ex ⇡ q0x
0 + q1x + · · ·+ q4x

4

• In the data analytics world, we don’t know the form of µ(x)
hence cannot write the Taylor expansion (the constants!), but
we can estimate them.
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Example : ex
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• Note that the least-squares fit performs better than the Taylor
series approximation

• However, this Taylor approximation is “tailored” to x = 0
(pun intended!).... Taylor approximation outperforms LS fit in
x 2 (�1, 1) based on the fit x 2 (�2, 2).

• Don’t get too excited about the polynomial model though
(panel on the right)
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Example : ex

We can also have a look at what is “left over” thefrom our fitted
functions, i.e. the “residual function:”
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Basis Functions for ex

• lm(y ~ x + I(x^2) + I(x^3) + I(x^4)) uses simple
polynomials x0, x1, x2, x3, and x4

• lm(y ~ poly(x,4)) uses orthogonal polynomials which
generate the same subspace.

• The latter case form an orthogonal basis for the subspace.

• bµ(x), i.e. the fitted values are the same based on the two
implementations, but the model coe�cients are di↵erent
because two di↵erent sets of basis functions are used.
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Basis Functions for ex

> x <- seq(-3, 3, length.out = 1000)

> y <- exp(x)

> fit1 <- lm(y~x + I(x^2) + I(x^3) + I(x^4))

> fit2 <- lm(y~poly(x,4))

> Taylor = sapply(0:4, function(x) 1/factorial(x))

> round(fit1$coefficients,3)

(Intercept) x I(x^2) I(x^3) I(x^4)

1.029 0.788 0.435 0.269 0.062

> round(fit2$coefficients,3)

(Intercept) poly(x, 4)1 poly(x, 4)2 poly(x, 4)3 poly(x, 4)4

3.346 123.146 77.778 34.882 12.153

> round(Taylor, 3)

[1] 1.000 1.000 0.500 0.167 0.042

Note: as you add polynomial terms to fit1, its coe�cients get closer

and closer to Taylor. Why?
12 / 150
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Example

> fit <- lm(accel ~ times+I(times^2)+I(times^3) , data=mcycle)

> round(coef(fit),3)

(Intercept) times I(times^2) I(times^3)

78.583 -17.114 0.668 -0.007
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Generalization

• In regression problems, µ(X ) = E (Y |X ) will typically be
non-linear and non-additive in X .

• We represent µ(X ) by a linear model for convenience, and
sometimes out of necessity.

• Linear models are convenient because they are easy to
interpret and sometimes necessary because with small n and
large p a linear model might be all we could fit the data
without over-fitting.
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Generalization

Basic Idea: Replace/augment the vector of explanatory variates X
with transformations of X and use linear models in the new space
of explanatory variables. We will use

• Polynomial regression add extra predictors in the form of
powers of X , i.e. X , X 2, X 3, ...

• Step functions cut the range of a variable into K distinct
regions, and calculate the mean (or other attributes) of the
response function as the fit. This is a piecewise constant fit.
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Generalization

• Regression splines extension of polynomials and piecewise
constant fit, and more flexible. The range of a variable X is
divided into K distinct regions. Within each region a
polynomial function us fit to the data. However, polynomials
are constrained so that they join smoothly at the boundary of
the regions a.k.a. knots. The flexibility of the fit depends on
the number of knots.

• Smoothing splines are similar to regression splines, but are
resulted from minimizing a residual sum of squares criterion
subject to a smoothness penalty.

• Local regression is similar to splines, but the regions are
allowed to overlap and indeed they do so in a very smooth
way.

• Generalized additive models extend the methods above to
deal with multiple predictors.
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Linear Basis Expansion

We mentioned that the basic idea is to replace/augment the vector
of explanatory variates X with transformations of X and use linear
models in the new space of explanatory variables.

Denote by hm(X) : Rp ! R the mth transformation of X,
m = 1, ...,M. We then write a linear basis expansion in X

Y|X = µ(X) + e =
M

Â
m=1

bmhm(X) + e

Note that once the basis functions hm have been determined (the
“dictionary” of functions), the models are linear in these new
variables, and fitting proceeds as before.
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Choosing the “Dictionary”

Question: How does one choose the basis functions for the model?

Answer: This is similar to a variable-selection problem. Some
options are:

• Choose them manually beforehand to limit the class of
functions (very popular)

• e.g. additive models:

µ(X) = Âp
j=1 µj (Xj ) = Âp

j=1 Â
Mj
m=1 bjmhjm(Xj )

• Include all and use a variable-selection procedure

• Include all and regularize (e.g. Ridge, LASSO, Elastic Net) to
shrink the coe�cients.

18 / 150

B t 132 2 t

b

E OHtaxi



Basis Functions

• In a more general case, let’s represent the functions h with b
(for basis). As discussed, the idea is to have a family of
functions or transformations b1(X ),...,bK (X ) to fit a linear
model

yi = b0 +
K

Â
j=1

bjbj (xi ) + ei

• Note that while the model above is not necessarily linear in X ,
it is linear in the basis functions bj , which are fixed and
known functions.

• Examples
• For polynomial regression:

• For piecewise constant regression:
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Fitting a Model with Basis Functions

• We can use ML or LS (or other approaches) to fit the linear
model in the previous slide ! predictors are ......

• All inference for linear models (t-test, F-test for model’s
significance, ANOVA, etc.) are valid.

• We have many choices for basis functions, e.g.

• Wavelets

• Fourier

• Splines
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Agenda
• Introduction to Smoothing Methods

• Polynomial Regression
• Basis Expansion

• Splines
• Cubic, Natural, and B-splines

• Regularization Methods
• Shrinkage Estimators: Ridge, LASSO, Elastic Net
• Smoothing Splines

• Local Weighting
• Delta Neighbourhood and KNN
• Kernel Smoothing
• Local Smoothing and LOESS

• Multidimensional Smoothing (if time permits)
• Tensor Product Bases
• Thin-plate Splines
• Additive Spline Model
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What Is a Spline?

• For a moment forget about statistical fit, and think about a
perfect fit, i.e. a model which goes through each and every
datapoint.

• A spline is a piecewise function which explains the behaviour
of this “perfect fit.”
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Linear Spline
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Cubic Spline
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Spline Models

• In the world of data and statistical modelling, usually, we are
not interested in a perfect fit!

• Consider a fixed set of knots x1, ..., xK .

• Spline approach could be applied to neighbourhoods with
continuity/di↵erentiability/smoothness constraints on
neighbourhood boundaries, i.e. knots.

• A regression spline is a piecewise function explaining the
behaviour of the data in each neighbourhood, subject to
continuity (and possibly smoothness) conditions at the knots.
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Order-M Spline

• An order-M spline with knots x1, ..., xK is a piecewise
polynomial of order M and has continuous derivatives up to
order M � 2.

• Cubic splines (order-4) are the lowest-order spline for which
the knot-discontinuity is not visible to the human eye.
Therefore, there is seldom any good reason to go beyond
cubic-splines.

• In practice, the most widely used orders are M = 1, 2, 4.

• A spline model with fixed knots is sometimes called a
regression spline.

.

26 / 150

Kp Es

constant
linear

7 i cubic



Piecewise Cubic Model
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Cubic Splines

Definition: The positive part function (x � a)+ is defined to be

(x � a)+ = max(0 , x � a)

.

Cubic Spline: Consider the fixed and known knots x1,...,xK , and
consider the basis functions 1, x , x2, x3, (x � xi )3+, i = 1, ...,K . A
cubic spline model can be represented as

µ(x) = b0 + b1x + b2x
2 + b3x

3 +
K

Â
j=1

bj+3(x � xj )
3
+
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Cubic Splines : Remarks

For the representation in the previous slide, we have

1) The model has K + 4 parameters.
(this is called the degrees of freedom of the model)

2) µ(x) is continuous up to the second derivative.
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Degrees of Freedom

• The degrees of freedom of the model (df) is the number
of parameters required to fit the model.

• Usually, the larger the df, the more flexible the model.

• The top left panel of the plot in slide 27 has too many
degrees of freedom. The constraints imposed on a cubic
regression spline result in the more natural and smooth fit of
the bottom-right panel.
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Degrees of Freedom
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Cubic Splines
Cubic Splines: Consider the fixed and known knots x1,...,xK , and
consider the basis functions 1, x , x2, x3, (x � xi )3+, i = 1, ...,K . A
cubic splines model can be represented as

µ(x) = b0 + b1x + b2x
2 + b3x

3 +
K

Â
j=1

bj+3(x � xj )
3
+
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Natural Cubic Splines

Natural Cubic Splines: here, we add boundary conditions to
cubic splines: the function is required to be linear at the boundary,
i.e. in the region smaller than the smallest knot of larger than the
largest knot.

Natural splines (don’t have to be cubic) provide more stable
estimates at the boundaries.
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Degrees of Freedom of Natural Cubic Splines
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Basis Functions of Natural Cubic Splines
Considering the model y = µ(x) + e, we are interested in
modelling µ(x) with regression splines.

A natural cubic spline with K knots x1, ..., xK is represented by K
basis functions.

Imposing the linearity on the boundaries, and using cubic splines
basis functions (with truncated power series), it can be show that

µ(x) =
K�1

Â
j=0

bjNj (x)

in which

N0(x) = 1, N1(x) = x , Nk+1(x) = dk(x)� dK�1(x)

where

dk(x) =
(x � xk)3+ � (x � xK )3+

xK � xk
, k = 1, ...,K � 2
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Basis Functions of Natural Cubic Splines

This rather unintuitive-looking basis has the nice property that the
second and third derivatives of each Nj are zero outside the
interval (x1 , xK ).
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Basis Functions: Cubic Splines vs. Natural Cubic Splines
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B-Splines

The basis functions based on polynomials and the positive part
function is just one choice of basis functions.

This particular choice is fairly easy to understand conceptually, but
it is, unfortunately, a poor choice for computation. The problem is
that powers of large numbers can lead to numerical instability and
round-o↵ error.

Instead, an equivalent set of basis functions but one which is
better computationally is the so-called B-spline basis, which also
allows for e�cient computation even when K , the number of
knots, is large.

We will not discuss the details but refer to Elements of Statistical
Learning by Hastie, Tibshirani and Friedman (pp. 186–189).
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B-Splines or order m
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Fitting Natural Cubic Splines
Consider the model y = µ(x) + e where we assume

µ(x) =
K�1

Â
j=0

bjNj (x)

then

y =
K�1

Â
j=0

bjNj (x) + e

which is a regular multiple linear regression problem with design
matrix generated by the basis functions Nj , j = 0, ...,K � 1.
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Fitting Natural Cubic Splines and B-Splines in R Software

In splines package a basis matrix is provided by two functions

• ns(...) and only for natural cubic splines.

• bs(...) for B-splines

Cubic polynomials are by far the most common and, as it turns
out, are all we really need in most circumstances.

In R, in addition to any interior knots provided by the user (or
determined automatically from a user supplied arguments) two
additional boundary knots, x0 and xK+1 may be supplied
(x0 < x1 and xK+1 > xK ). These determine the points beyond
which the lower degree polynomials (here linear) are fit. By
default, ns chooses the boundary knots at the minimum and
maximum x values in the data.
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Simulated Data

Consider the simulated data below:
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Simulated Data : B-Spline Basis Functions
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Simulated Data : B-Spline Fit
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Simulated Data : Natural Basis Functions
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Simulated Data : Natural Spline Fit
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Simulated Data : Natural Spline vs. B-Spline
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Location of the Knots

Given K number of knots, where should we place the knots?

The regression spline is most flexible in regions that contain a lot
of knots, because in those regions the polynomial coe�cients can
change rapidly.

It is reasonable to put more knots where the function changes
more rapidly and to put fewer knots where it seems stable.

In practice, it is common to place the knots in a uniform fashion.

Another method is to estimate the location of the knots. For
example, DiMatteo et al. (2001) used the reversible jumps MCMC
to estimate both the number of location of the knots within a
computational neuroscience context (paper posted on LEARN).
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Varying Degrees of Freedom

The degrees of freedom depends on

1) number of knots

2) degree of the local polynomial (in practice: 0, 1, or 3)

Model selection methods and cross-validation can be used to
choose the degree of freedom.
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Varying Degrees of Freedom
bs(x, degree= p, df=df): here R will put df � p knots
uniformly on the quantiles of x .

The df argument in the bs function is di↵erent from the degrees
of freedom which was defined on slide 5.

Here we are fitting cubic splines (p = 3) with varying df = 4, 5, 8
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50 / 150

6984

Pt f k df_p
K 4 3 1 s0nQo5

of knots

K 5 3 2 7001033,0066
K 8 3 5



Varying Degrees of Freedom
You may decide to put more knots where there might be more
variability in the function.
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Agenda
• Introduction to Smoothing Methods

• Polynomial Regression
• Basis Expansion

• Splines
• Cubic, Natural, and B-splines

• Regularization Methods
• Shrinkage Estimators: Ridge, LASSO, Elastic Net
• Smoothing Splines

• Local Weighting
• Delta Neighbourhood and KNN
• Kernel Smoothing
• Local Smoothing and LOESS

• Multidimensional Smoothing (if time permits)
• Tensor Product Bases
• Thin-plate Splines
• Additive Spline Model
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Some Model Selection Criteria

1 R2 and adjusted R2,

2 Akaike’s Information Criterion (AIC, AICs),

3 Bayesian Information Criterion (BIC),

4 Stepwise Method in Variable Selection,

5 PRESS-type criteria

More modern modelling techniques involve regularization methods
such as LASSO, ridge regression, and elastic net, some of which
incorporate variable selection in the process of parameter
estimation.
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Model Selection Techniques

The common methods of model selection are the following:

• Least squares fit

• Subset Selection

• Shrinkage

• Dimension Reduction
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Model Selection Techniques

Introduction to Statistical Learning by Gareth et al. (2013, p.204)
defines the last three methods as follows:

1) Subset Selection: This approach involves identifying a
subset of the p predictors that we believe to be related to the
response. We then fit a model using least squares on the
reduced set of variables.
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Model Selection Techniques

2) Shrinkage: This approach involves fitting a model involving
all p predictors. However, the estimated coe�cients are
shrunken towards zero relative to the least squares estimates.
This shrinkage (also known as regularization) has the e↵ect of
reducing variance. Depending on what type of shrinkage is
performed, some of the coe�cients may be estimated to be
exactly zero. Hence, shrinkage methods can also perform
variable selection.
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Model Selection Techniques

3) Dimension Reduction: This approach involves projecting the
p predictors into a M-dimensional subspace, where M < p.
This is achieved by computing M di↵erent linear
combinations, or projections, of the variables. Then these M
projections are used as predictors to fit a linear regression
model by least squares.
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Shrinkage Methods

We will discuss the following three shrinkage methods in variable
selection for regression:

• Ridge regression

• LASSO

• Elastic net

All of these methods fall under shrinkage or regularization methods.

RSS(l) :=
n

Â
i=1

⇣
yi � b0 �

p

Â
j=1

xijbj

⌘2

| {z }
Loss Function

+ l ⇥ pen(b)
| {z }

Penalty
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Ridge Regression
Definition: The ridge regression estimate of a linear model is
defined as

bb
ridge

:= argmin
b

RSS(l),

where

RSS(l) :=

(
n

Â
i=1

⇣
yi � b0 �

p

Â
j=1

xijbj

⌘2
+ l

p

Â
j=1

b2
j

)

where l > 0 is a tuning parameter which determines the
bias-variance trade-o↵. This problem can be written in an
equivalent form as

bb
ridge

:= argmin
b

n

Â
i=1

⇣
yi � b0 �

p

Â
j=1

xijbj

⌘2
s.t.

p

Â
j=1

b2
j  t

where there is a one-to-one correspondence between l and t.
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Ridge Regression (cont’d)

Note that

RSS(l) :=

(
n

Â
i=1

⇣
yi � b0 �

p

Â
j=1

xijbj

⌘2
+ l

p

Â
j=1

b2
j

)

:= (y�Xb)T (y�Xb) + lbT b

Calculating the derivative of RSS(l) w.r.t. the vector
b = (b1, ..., bp), setting it to zero, and solving the equation, we
get (show this):

bb
ridge

= (XTX+ lI )�1XTy

where I is the p ⇥ p identity matrix.

It turns out that bb0 = y � Âp
j=1 x

bbj , so centralizing the columns

of X (i.e. xij � xj , j = 1., .., p) results in bb0 = y . Centralizing both

y (i.e. y i � y) and the columns of X results in bb0 = 0.
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Example

The market value of a house should be a function of a number of
features of the house and a model for sale price as a function of
these features can be useful.

X1 Current taxes
X2 Number of Bathrooms
X3 Lot size
X4 Living space
X5 Number of parking spaces
X6 Number of rooms
X7 Number of bedrooms
X8 Age of house
X9 Number of fireplaces
Y Actual sale price
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House Price Data-set: Ridge Regression
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Note that the some of the parameter estimates get very close to 0,
but they are not exactly 0, hence ridge regression does not perform
a direct variable selection.
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LASSO

Definition: The LASSO regression estimate of a linear model is
defined as

bb
lasso

:= argmin
b

(
n

Â
i=1

⇣
yi � b0 �

p

Â
j=1

xijbj

⌘2
+ l

p

Â
j=1

|bj |
)

where l > 0 is a tuning parameter which determines the
bias-variance trade-o↵. This problem can be written in an
equivalent form as

bb
lasso

:= argmin
b

n

Â
i=1

⇣
yi � b0 �

p

Â
j=1

xijbj

⌘2
s.t.

p

Â
j=1

|bj |  t

where there is a one-to-one correspondence between l and t.
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LASSO (cont’d)

• Comparing LASSO to ridge regression, we see that the
constraint is on the absolute value of the parameter values,
not the squares.

• Unlike ridge regression, LASSO does not have a closed form

solution for the parameter estimates bb
lasso

.

• The L1 penalty used in LASSO works as a variable selection as
the shrinkage forces some of the parameter estimates to be
exactly 0.
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House Price Data-set: LASSO
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Note that as the penalty l increases, the parameter estimates are
shrunk to 0, hence Lasso performs a direct variable selection.
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Ridge vs. LASSO
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LASSO and Variable Selection
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Variable Selection Using LASSO (from ISLR Book)

Consider a regression model with two explanatory variates, hence
parameter vector b = (b1, b2).
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Elastic Net Regression
Definition: The elastic net regression estimate of a linear model is
defined as

bbEN
:= argmin

b

(
n

Â
i=1

⇣
yi � b0 �

p

Â
j=1

xij bj

⌘2
+ l

p

Â
j=1

h
(1� a)b2j + a|bj |

i)

where l > 0 determine the overall complexity of the model, and
the elastic net parameter a 2 [0, 1] provides a mix between ridge
regression and the lasso.

The package glmnet is used for Ridge (alpha=0), LASSO
(alpha=1), and Elastic Net (a 2 (0, 1)).

While parameters a and l can be chosen via cross-validation,
typically a grid search is used. The grid for a is usually coarse
(three to five values) while that of l is much finer (a few hundred
values).
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More Details on Lasso, Ridge, and Elastic Net

• ISLR : Chapter 6 (6.2, and ideas from 6.4, and 6.6)
• Videos by the authors available in this link.

• ESL : Chapter 3 (3.4)

• Statistical Learning with Sparsity

There are variations of LASSO (grouped LASSO, fused LASSO,
etc.) which are beyond the cope of this short course. See the last
reference above for details.

Next, we take the regularization idea to spline models, i.e.
smoothing splines.
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Agenda
• Introduction to Smoothing Methods

• Polynomial Regression
• Basis Expansion

• Splines
• Cubic, Natural, and B-splines

• Regularization Methods
• Shrinkage Estimators: Ridge, LASSO, Elastic Net
• Smoothing Splines

• Local Weighting
• Delta Neighbourhood and KNN
• Kernel Smoothing
• Local Smoothing and LOESS

• Multidimensional Smoothing (if time permits)
• Tensor Product Bases
• Thin-plate Splines
• Additive Spline Model
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Location/Number of Knots Splines

Whether B-Spline or natural spline is used, we still need to decide
on the number and locations of the knots.

• Equal-distance knots: Distribute the knots such that xi � xi�1

is constant i = 2, ..., k .

• Equal-distance quantiles: Distribute the knots on quantiles of
the data. One choice to distribute k knots is to locate them
at i

k+1 , i = 1, ..., k quantiles.

• Corss-validaiton: following a regime for location of the knots,
e.g. equal-distance quantiles, you may use cross-validation to
choose the number of knots.
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Smoothing Splines

Knot selection can be avoided by recasting the problem. Note that
we would still like to use the Splines.

We would like to estimate the function µ(x) which minimizes
RSS = Ân

i=1(yi � µ(xi ))2, but that is also smooth.

We can let the data “smooth itself,” i.e. control the smoothness of
the fit by regularization. In other words, we will penalize the RSS
for overfitting or roughness.

In fact, rather than defining smoothness (which is what we want),
we will define what we don’t want, namely a non-smooth or
“rough” function. But how to define “rough?”
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A Measure of Roughness
• Suppose µ(x) is, at least, twice di↵erentiable.

• µ0(x) measures the slope. A function with any slope can be
smooth.

• A function with frequent or abrupt changes in the slope
though would be rather rough.

• The second derivative µ00(x) measures how quickly the slope
changes at any given point x .

• Large values of (µ00(x))2 indicate that there is an abrupt
change in slope at the point x . Therefore, one possible
measure of roughness might be

Z �
µ00(t)

�2
dt

The smaller is the integral, the smoother is µ(x).
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Smoothing Splines

A smoothing spline bµ(x) is a function estimate of µ(x) obtained
by minimizing

RSS(µ,l) =
n

Â
i=1

(yi � µ(xi ))
2 + l

Z �
µ00(t)

�2
dt

where l � 0 is a fixed smoothing parameter (also called a tuning
parameter).

E↵ect of l:

• l = 0 :

• l = • :

• Lagrange multiplier?
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The “Smoothest” Interpolator

Theorem: Suppose f (x) : R ! R is a real function whose value
is known only at a set of n distinct points x1, ..., xn. The points
(x1 , f (x1)) ,..., (xn , f (xn)) can be used to determine natural
cubic splines s(x) such that s(xi ) = f (xi ), i = 1, ..., n. For any
di↵erentiable function g(x) passing through the points
(xi , f (xi )), we have

Z •

�•

�
s 00(x)

�2
dx 

Z •

�•

�
g 00(x)

�2
dx

This means that the NCS is the “smoothest” interpolator.
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Smoothing Splines and Natural Cubic Splines

For any fixed l, the solution to the penalized residual sum of
squares problem

min
µ

"
n

Â
i=1

(yi � µ(xi ))
2 + l

Z �
µ00(t)

�2
dt

#

is a natural cubic spline with knots at every unique value of
xi .

In other words, the solution requires bµ(x) to be of the form

bµ(x) =
n

Â
j=1

Nj (x)bbj

where the Nj (x), j = 1, ..., n is a set of n basis functions for this
family of natural cubic splines.
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Deriving bb (better notation : bbl)
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Choosing l

In smoothing splines there is a knot at every point xi , i = 1, .., n,
so we don’t need to worry about choosing the number and/or
location of the knots, but we have to choose l.

The tuning parameter (penalty factor) l can be chosen using
cross-validation

We will show, through connecting l to a measure of complexity
(or roughness) of the fitted model, that the LOOCV can be
simplified to tune l in a computationally e�cient way.
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Degrees of Freedom

• Recall multiple linear regression Y = Xb + e. The degrees of
freedom (number of parameters) of this model is p + 1: # of
explanatory variables + 1 (+1 for b0).

• Recall that

by = X bb = X (XTX )�1XTy = Hy

where trace(H) = p + 1.

• The hat-matrix H is a projection matrix, i.e. it is idempotent
H2 = H.

• Observation: trace(H) = Rank(X ) is the dimension of the
projection space.
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(E↵ective) Degrees of Freedom Method
We have

bµ =
⇣
bµ(x1), bµ(x2), . . . bµ(xn)

⌘T

= Nbb

= N
⇣
NTN + lWN

⌘�1
NTy

= Sl y

hence a smoothing spline is a linear smoother.

Sl is not a projection matrix (why?), hence we cannot say that the
dimension of the projection spate (df) is trace(Sl).

However, by analogy, we can define the e↵ective degrees of
freedom of a smoothing spline to be

dfl = trace(Sl) =
n

Â
i=1

{Sl}ii
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Leave-One-Out and Generalized Cross-Validation

There is a monotone decreasing relationship between l and dfl.
This means cross-validation can be done on either l or on dfl.

• LOOCV:

RSSCV (l) =
n

Â
i=1

⇣
yi � bµ(�i)

l
(xi )

⌘2
=

n

Â
i=1

✓
yi � bµl(xi )
1� {Sl}ii

◆2

• Generalized Cross-validation:

RSSGCV (l) =
n

Â
i=1

 
yi � bµl(xi )

1� 1
n trace(Sl)

!2
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Example : Simulated Data
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LOOCV : Simulated Data

> sm.LOOCV <- smooth.spline(x, y, cv = TRUE)

> sm.LOOCV

Call:

smooth.spline(x = x, y = y, cv = TRUE)

Smoothing Parameter spar= 0.6402688 lambda= 7.07313e-06

(14 iterations)

Equivalent Degrees of Freedom (Df): 25.82318

Penalized Criterion (RSS): 12.62976

PRESS(l.o.o. CV): 54.50422

> sm.LOOCV$lambda

[1] 7.07313e-06

> sm.LOOCV$df

[1] 25.82318
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GCV : Simulated Data

> sm.GCV <- smooth.spline(x, y, cv = FALSE)

> sm.GCV

Call:

smooth.spline(x = x, y = y, cv = FALSE)

Smoothing Parameter spar= 0.5603612 lambda= 1.87198e-06

(11 iterations)

Equivalent Degrees of Freedom (Df): 33.9024

Penalized Criterion (RSS): 11.7393

GCV: 1.65062

> sm.GCV$lambda

[1] 1.87198e-06

> sm.GCV$df

[1] 33.9024
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Cross-validated Fits : Simulated Data
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Note

Note: In the interest of time, the material from here up to slide
103 can be skipped.

This material discussed the geometric and linear algebraic details
of smoothing splines.
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Eigen Decomposition

Consider the square matrix Ap⇥p with eigenvalues l1, ...,lp and
corresponding eigenvectors u1,...,up. Let U = [u1 , u2 , ... , up ]
and L = diag(l1, ...,lp). Then A can be written as

A = ULU�1 =
p

Â
i=1

li uiu
⇤
i ! eigen decomposition

Properties:

• If A is symmetric, then the eigenvectors u1,...,up are
orthogonal.

• A2 = UL2U�1

• If A is a (real) symmetric matrix, then

• U�1 = UT , hence A = ULUT ! A = Âp
i=1 li uiuTi
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Singular Value Decomposition
If

• A is not a square matrix, or

• U is not a square matrix, e.g. A =(1 1
0 1), then U�1 does not

exist

then A does not have an eigen decomposition. For such cases, we
use the singular value decomposition of A.

Consider the matrix An⇥p where (n � p). The singular value
decomposition (SVD) of A is the product of three matrices

An⇥p = Un⇥n Sn⇥p V T
p⇥p =

p

Â
i=1

siuiv
T
i

where U and V have orthonormal columns and S =(diag(s1,...,sp)0(n�p)⇥p
).

If A is a symmetric (positive semidefinite) matrix, then SVD and
engen decomposition of A are the same thing.
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Regression : An Eigen Decomposition Approach

• In the regression model Y = Xb + e, the hat matrix
H = X (XTX )�1XT is the projection matrix.

• The n-dimensional fitted mean is bµ = Hy: the orthogonal
projection of y on to the space spanned by the columns of X ,
i.e. colsp(X ).

• Assuming r1 � r2 � · · · � rn � 0 are the eigen-values of H
with corresponding eigen-vactors u1, ...,un, we have

H =
n

Â
i=1

riuiu
T
i =) bµ =

n

Â
i=1

ri ui u
T
i y =

n

Â
i=1

uiri < ui , y >

• Since H is a projection matrix (idempotent), the eigenvalues
of H are 0 or 1. It can be shown that the first r eigenvalues
are 1 (the rest are 0) where r = rank(X ).
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Regression : An Eigen Decomposition Approach

• The general case of cubic splines is the same as regression.

• Replace the design matrix X with the basis matrix B and the
corresponding projection matrix is HB = B(BTB)�1BT .

• When using bs(...) or ns(...) in R, we could specify the
degrees of freedom df and have the function choose the
appropriate number (and location) of the knots with which to
build B .

• Can we parameterize a smoothing spline in a similar way?
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Smoothing Splines : An Eigen Decomposition Approach
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Smoothing Splines : An Eigen Decomposition Approach

Assuming the form µ(x) = Nb, where N is the n⇥ n matrix of
basis functions calculated at x1, ..., xn, we have

RSS(µ , l) =
n

Â
i=1

(yi � µ(xi ))
2 + l

Z �
µ00(t)

�2
dt

= (y�Nb)T (y�Nb) + lbT WN b

= (y�Nb)T (y�Nb) + lµTKµ

where µT =
�
µ(x1), ..., µ(xn)

�
.

The fitted model/values is/are

bµ = Sly

= (In + lK )�1y
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Smoothing Splines : An Eigen Decomposition Approach

• The di↵erence btween this and p-order splines is that the
eigen-values ri (l) are not just zero or one. The two largest
are 1 (corresponding to d1 = d2 = 0) and the rest are less
than one.

• Since HB is a projection matrix, (potentially) r directions are
selected and the rest are dropped. That is the nature of a
projection operator and so this kind of spline is sometimes
called a projection smoother.

• In contrast, Sl ⇥ Sl � Sl (not idempotent, in fact, the
right-hand-side exceeds the left-hand-side by a
positive-definite matrix). Sl ⇥ Sl has smaller eigen-values
than the original Sl. Because of this shrinkage, the smoothing
spline is sometimes called a shrinking smoother.
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E↵ective Degrees of Freedom and l

• The value dfl = trace(Sl) is called the e↵ective degrees of
freedom. We have

dfl =
n

Â
i=1

1

1+ ldi

• dfl is a decreasing function of l

• As l ! 0 :

• As l ! • :

• To get some sense of what basis functions di↵erent values of
l correspond to, we could get the eigen decomposition of Sl

for our simulated data example.
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Simulated Data , dfl = 11
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• dfl = 11 since sum(eigen(S)) = sum(diag(S)) = 11.00184.

• ri (l) drop o↵ very quickly: components of y in the direction
of the smallest eigenvalues are shrunk e↵ectively to zero.

• What do the eigen-vectors corresponding to the largest
eigen-values look like?
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Eigen-vectors u1, ...,u4 of Sl for dfl = 11
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Eigen-vectors u5, ...,u8 of Sl for dfl = 11
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Eigen-vectors u9, ...,u12 of Sl for dfl = 11
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Farther out Eigen-vectors of Sl for dfl = 11
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Agenda
• Introduction to Smoothing Methods

• Polynomial Regression
• Basis Expansion

• Splines
• Cubic, Natural, and B-splines

• Regularization Methods
• Shrinkage Estimators: Ridge, LASSO, Elastic Net
• Smoothing Splines

• Local Weighting
• Delta Neighbourhood and KNN
• Kernel Smoothing
• Local Smoothing and LOESS

• Multidimensional Smoothing (if time permits)
• Tensor Product Bases
• Thin-plate Splines
• Additive Spline Model
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Local Neighbourhoods

Regular splines: prespecified knots

Smoothing splines: fit the data more locally, i.e. knots at every
unique point xi

Alternative: Fit a model which focuses on each and every x
locally, i.e. it fits to a “neighbourhood” of x .
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K Nearest Neighbour Fitting

The simplest neighbourhood method is to fit a local average at
each neighbourhood of x , i.e.

bµ(x) = Ave
�
yi | xi 2 Nk(x)

�

in which Nk(x) is the set of k points nearest to x in squared
distance.
(don’t mix this up with Nd : constant distance neighbourhood)

To do this, we will find the k nearest neighbours of x for all values
of x in the dataset.

The function knn.reg from the package FNN will compute this
average for every point xi in the data.

Let’s apply this to our simulated dataset.
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K Nearest Neighbour Fitting : Simulated Data
Press = 16.22 Press = 15.77 Press = 19.45
R2 = 0.921 R2 = 0.923 R2 = 0.906
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Choosing K

• Small K :

• complex/flexible model

• high variability (wiggly)

• low bias (potential for “chasing the noise”)

• Large K :

• inflexible model

• low variability (smooth)

• high bias

One strategy is to choose based on MSE/PRESS/R2 (no test
data), or we can do cross validation (with test data).
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Increasing the Complexity of Local Fits

• As the size of local neighbourhoods increases, the smoother
becomes the fitted function.

• We might also replace the averages with any fitted model
based on the k nearest neighbours of any location x .
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Local Weighting
You may think of local fitting as a model which uses all points, but
those outside the local neighbourhood have zero weight (in the
sense of weighted least squares).

Least-squares fit on the k nearest neighbours is a least-squares fit
on all of the data but with weights that are 1 for points inside the
neighbourhood and zero for points outside the neighbourhood.
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Local Weighting

The local least squares with zero-one weights can be written as

bµ(x) = argmin
µ

"
N

Â
i=1

w(x , xi )r
2
i

#

= argmin
µ

"
N

Â
i=1

w(x , xi )(yi � µ(xi ))
2

#

where

w(x , xi ) =

8
<

:

1 xi 2 Nbhd(x) = Nk(x)

0 otherwise.
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Local Weighting

Alternatively, we might not worry so much about the
neighbourhood but rather choose the weights more judiciously.

Since we are trying to fit locally, we could choose higher weights
for the closer points and lower weights for those farther away.

For example, we might consider weights that are proportional to a
function, say K (t) having the following properties:

•
R
K (t)dt = 1

•
R
t K (t)dt = 0

•
R
t2 K (t)dt < •

The function K (t) is called a kernel function.

Assuming also K (t) � 0, 8t, then K (t) could be a symmetric
density function with mean 0 and finite variance.
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Example of Kernel Functions

1) Epanechnikov kernel:

K (t) =

8
<

:

3
4

�
1� t2

�
for |t| < 1

0 otherwise.

2) Tukey’s tri-cube weight:

K (t) =

8
<

:

�
1� |t|3

�3
for |t|  1

0 otherwise.

3) Gaussian Kernel:

K (t) =
1p
2p

exp

✓
� t2

2

◆
.
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Example of Kernel Functions
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Kernel-weighted Average (Kernel Smoother)

Since we are interested in applying these functions locally, the
kernel function K (·) is applied not to each xi , but rather to the
di↵erence xi � x .

Similarly, a means of controlling how quickly the weights diminish
for any kernel is to introduce a scale parameter, say h > 0, called
the bandwidth.

Putting these together, we evaluate the kernel function at xi�x
h .
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Kernel-weighted Average (Kernel Smoother)

Our weight function would be calculated as

w(x , xi ) =
K
� xi�x

h

�

Ân
j=1 K

⇣
xj�x
h

⌘

Assuming the squared error loss is used, and µ is modelled as a
piecewise constant function, the previous piecewise constant
estimate

bµ(x) = Ave
�
yi | xi 2 Nk(x)

�

is replaced with the Nadaraya-Watson kernel-weighted average:

bµ(x) =
n

Â
i=1

w(x , xi )yi =
n

Â
i=1

0

@ K
� xi�x

h

�

Ân
j=1 K

⇣
xj�x
h

⌘

1

A yi
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Kernel Smoother : Local Linear Regression

Piecewise constant fit may be replaced by linear, quadratic, ...
models.
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Local Weights

Consider the weights

w(x , xi ) =
K
� xi�x

h

�

Ân
j=1 K

⇣
xj�x
h

⌘

where there are many choices for the kernel function K , some of
which are Epanechnikov, Tukey’s tri-cube , and Gaussian.

We can fit a weighted least squares model using these weights.

Note that the fitted model depends on the value of x . The idea is
that the model is evaluated at many points x .
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Illustration - E↵ect of Bandwidth h
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Illustration - E↵ect of Bandwidth h
• The smaller the bandwidth h, the more structures are
captured, i.e. the more flexible is the model.

• Increase the number of points x to get a more precise plot of
the fit.
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Comparison to the True Model
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What Remains?

The naive locally weighted sum of squares estimators have some
di�culties which require attention:

• Choice of bandwidth h.
• Also, we only looked at x locations but one might choose a

proportion of the nearest x values.

• Choice of what weight function (kernel).
• Perhaps a more robust choice that actually gives zero weight

to points that are far away.

• What about the ends?
• It seems that we can only estimate using data from one side of

the endpoint. Should that e↵ect the choice of bandwidth
there? Or the weight function?
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Using KNN and Local Weights Together

• The naive locally weighted sum of squares above did not
define neighbourhoods, but rather used the scale parameter h
to determine how weights would diminish.

• This means that where the data is densest in x , more points
will appear in the estimation than where it is sparser.

• Let’s impose the condition that only k points in a
neighbourhood of x may have non-zero weights. all points
outside of the neighbourhood will have zero weights.

• We will also use some kernel function to downweight points in
the neighbourhood. The kernel will again be evaluated at
(xi � x)/h , but now we will choose h to be a function of the
maximum distance |xi � x | over all points in the
neighbourhood.
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LOESS: LOcally wEighted Sums of Squares

• We can use the function loess from the default-loaded
stats package or the function locpoly from the
KernSmooth package.

• Here, we focus on the function loess.
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Notes on loess

The loess function uses a local neighbourhood determined by

• either its argument span (default=0.75) as the proportion of
points, say a, taken as the local neighbourhood (roughly KNN
with k ⇡ n⇥ a)

• or its argument enp.target, this being the “number of
equivalent parameters” in the model - like the e↵ective model
degrees of freedom, a measure of the complexity of the model.
This too produces an equivalent proportion a of points in the
local neighbourhood.
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Notes on loess
Given the parameter a < 1, the default weighting is given by
Tukey’s tri-cube weight function

K (t) =

⇢
(1� |t|3)3 for |t|  1
0 elsewhere

For the ith point in the neighbourhood, we take

ti =
|xi � x |

maxj2Nbhd(x) |xj � x | .

If a > 1, the above denominator is replaced by

(a1/p)⇥ max
j2Nbhd(x)

|xj � x |

where p is the number of explanatory variates in case there is more
than 1. (in this case, |xi � x | is replaced everywhere by the
Euclidean distance kxi � xk)
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Notes on loess

The function loess is not restricted to fitting local lines and can
fit degree 0, 1, or 2 polynomial locally (in practice, typically degree
1 or 2 is used). Its default is 2.

The fitting mechanism is given by the parameter family and can be
either gaussian (the default), which will use least-squares to fit the
local polynomial, or symmetric which will begin with least squares
and then perform a few iterations of an M-estimation using
Tukey’s bisquare weight function.
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Some Models for y = µ(x) + e
• Cubic Splines:

µ(x) = b0 + b1x + b2x
2 + b3x

2 +
K

Â
j=1

bj+3(x � xj )
3
+

• Natural cubic splines (solution to smoothing splines):

bµ(x) =
n

Â
j=1

bjNj (x)

• Kernel regression (e.g. loess linear model):

bµ(x0) = bb0(x0) + bb1(x0)x

where bb =
⇣
bb0(x0) , bb1(x0)

⌘
is computed from

bb = arg min
bb0(x0),bb1(x0)

2

4
n

Â
i=1

0

@
K
⇣
xi�x0

h

⌘

Ân
j=1 K

⇣
xj�x0

h

⌘

1

A
⇣
yi � b0(x0)� b1(x0)x

⌘2
3

5
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Comparing the Linear Smoothers

All of the above three methods are linear smoothers (why?) hence
they have the same form. We should be able to look at them in
much the same way– no matter how they were motivated or
derived.

As an example, local regression smoothers like loess were built on
kernel functions which gave higher weight to observations nearest
the point x = x0 of interest. We might expect, therefore, that in
computing the fit at any given x that the coe�cients multiplying
any y would be higher for a yi whose corresponding xi was closer
to x0 than for one which was farther away. To check this, we might
have a look at the coe�cients of each y as a function of x .

How about other methods? Do they behave the same way?
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Coe�cient of y as a Function of x

A linear smoother has the form

bµ(x) = Sy

where, depending on the model (splines, kernel regression, etc.),
the smoothing matrix S will change.

Note that common R packages/functions for the methods
discussed so far do not output the smoothing matrix automatically,
so you have to manually code it.

The i th row of S is the coe�cients of y = (y1, ..., yn)T for x = xi ,
i.e. bµ(xi ) = Siy where Si represents the i th row of S .
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Simulated Data

We will work with the following simulated data as a working
example.
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Coe�cient of y as a Function of x For loess
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Note that the coe�cients concentrate around the x value.
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Coe�cient of y as a Function of x For Smoothing Splines
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As was the case with the local regression, the coe�cient of yi is
higher the closer x value is to the value of xi .
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Coe�cient of y as a Function of x
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Decomposing the Smoothing Matrix

Recall the eigenvalue decomposition of the smoothing splines. We
can do the same for any linear smoother.

In the general case of linear smoothing, the smoothing matrix may
not be symmetric. As a result we will work with the singular value
decomposition of the smoothing matrix S .
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Decomposing the Smoothing Matrix

We decompose any smoother matrix S as

S = UDrV
T

for n⇥ n matrices U = [U1, . . . ,Un], V = [V1, . . . ,Vn], and
Dr = diag(r1, . . . , rn with r1 � r2 � · · · � rn � 0 and

UTU = In = V TV .

The smooth can now be written as

bµ = UDrV Ty

= Ân
i=1Uiri < Vi , y >

which separates into the basis vectors Ui , the singular values ri
and the orthogonal component of y along the direction vectors Vi .
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Singular Values and y Components
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Basis Functions (first 4)
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Basis Functions (5-8)
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Basis Functions (9-12)
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Conclusions
Even though smoothing splines were derived from a global
minimization, their linear smoothing structures turns out to work
in a similar way to the local model loess. We’ve observed the
following trends in both loess and smoothing splines for our
simulated data:

• Coe�cients of y: The coe�cient of yi is higher the closer x
value is to the value of xi .

• Singular values: Their plot has an “elbow-shape,” where
singular values die o↵ quickly. How quickly the singular values
converge to zero depends on signal to noise ratio in the data.

• y components < Vi , y >: Similar pattern to singular values
for the same reason.

• Basis functions: The orthogonal basis functions increase in
complexity as i increases and the higher frequency basis
functions are largely obliterated by the small singular values
and y components.
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Agenda
• Introduction to Smoothing Methods

• Polynomial Regression
• Basis Expansion

• Splines
• Cubic, Natural, and B-splines

• Regularization Methods
• Shrinkage Estimators: Ridge, LASSO, Elastic Net
• Smoothing Splines

• Local Weighting
• Delta Neighbourhood and KNN
• Kernel Smoothing
• Local Smoothing and LOESS

• Multidimensional Smoothing (if time permits)
• Tensor Product Bases
• Thin-plate Splines
• Additive Spline Model
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Multidimensional Splines
• The spline models have been designed to fit a curve to a
single explanatory variate x .

• What if we have more than one explanatory variate?

• There are several ways to generalize the splines curve-fitting
method, a few are:

1) Using tensor product basis
• This is a generalization of regular basis expansion models (e.g.

cubic splines) to higher dimensions

2) Using a multivariate high curvature penalty: thin plate splines
• This is a generalization of smoothing splines to higher

dimensions

3) Using an additive spline model
• This is another generalization of smoothing splines to higher

dimensions, which imposes additivity on all components of the
model.

We will not discuss the details of these methods, but simply
introduce them.
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1) Tensor Product Basis

• Consider X = (X1,X2) 2 R2, and the basis functions hik(Xi ),
k = 1, ...,Mi representing functions of coordinate Xi , i.e. two
sets of basis functions one to represent coordinate X1 and the
other to represent coordinate X2.

• The M1 ⇥M2 dimensional tensor product basis is defined by

gjk(x1, x2) = h1j (x1) h2k(x2), j = 1, ...,M1, , k = 1, ...,M2

and can be used for representing a two-dimensional function:

µ(x1, x2) = b0 +
M1

Â
j=1

M2

Â
k=1

bjkgjk(x1, x2)

• The coe�cients can be can be fit by least squares.
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1) Tensor Product Basis

• Tensor product basis can be generalized in the same fashion
to the d-dimensional case (d > 2), but the e↵ective model
degrees of freedom grows multiplicatively with the number of
explanatory variates (curse of dimensionality).

• There are methods to select only those tensor products which
are deemed necessary by least squares (e.g. MARS).
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1) Tensor Product Basis : a 2-dimensional example
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2) Thin Plate Splines

• We can generalize the one-dimensional smoothing splines to
higher dimensions as well.

• Consider the data (x1 , y1),...,(xn , yn) where xi 2 Rd , and
we seek a d-dimensional regression function µ(x).

• We can set up the problem as

min
µ

(
n

Â
i=1

�
yi � µ(xi )

�2
+ l J [µ]

)

where J [µ] os am approperiate penalty function to stabilizing
a function in Rd .
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2) Thin Plate Splines

• A natural generalization of the one-dimensional roughness
penalty for functions on R2 is

J [µ] =
Z Z

R2

2

4
 

∂2µ(x)

∂x21

!2

+ 2

✓
∂2µ(x)
∂x1∂x2

◆2

+

 
∂2µ(x)

∂x22

!2
3

5 dx1 dx2

• The solution has the form

µ(x) = b0 + bTx+
n

Â
i=1

ajhj (x)

where hj (x) = kx� xjk2 log (kx� xjk). Using this format of
µ(x) in the penalized least squares optimization problem
(previous slide), the parameters can be estimated.
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3) Additive Spline Models

• The additive spline models are a restricted class of
multidimensional splines.

• Suppose µ(x) = b0 + µ1(x1) + ...+ µd (xd ), and that each of
the functions µj are univariate splines.

• One natural penalty for the smoothing splines then is
J [µ] = J [µ1 + · · ·+ µd ] = Âd

j=1

R
µ00
j (tj ) dtj

• This method can be naturally extend to ANOVA spline
decompositions.

149 / 150



Agenda
• Introduction to Smoothing Methods
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