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Agenda

Introduction to Smoothing Methods

e Polynomial Regression
e Basis Expansion

Splines
e Cubic, Natural, B, and the underlying geometry/linear algebra

Regularization Methods

e Shrinkage Estimators: Ridge, LASSO, Elastic Net
e Smoothing Splines

Local Weighting
o Delta—Netghbourhood-andKNN

e Kernel Smoothing
e Local Smoothing and LOESS

Multidimensional Smoothing (if time permits)
e Tensor Product Bases
e Thin-plate Splines
e Additive Spline Model
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Housekeeping Stuff

e Format: This part of the workshop is mostly applied with
minimal theoretical content. More details can be found in the
references below.

e Additional Resources:

An Introduction to Statistical Learning by James et al. : Ythe
book, lectures by the authors, codes, errata, etc.
under this link.

The elements of Statistical Learning by Hastie, Tibshirani, and
Friedman : the book is available here, and more stuff (codes,
data, errata, etc.) can be found here.

Statistical Learning with Sparsity by Hastie, Tibshirani, and
Wainwright available here.

Machine Learning: A Probabilistic Perspective by Kevin
Murphy — (has a computer science approach)

A Practical Guide to Splines by Carl de Boor
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https://www.statlearning.com/
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/
https://web.stanford.edu/~hastie/StatLearnSparsity/index.html
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Revisiting the Geometry of Y|(X = x) = u(x) +¢€
Y

In polynomial regression, the model
_ 2 p & 2 3 ?
H(x) = o+ P1x + Pox” + ... + Bpx ’/X/X/)c,-wy
is a linear combination of polynomial terms of x.

However, 1(x) can be expressed as some (unknown) linear
combination of other functions, e.g.

]/l(X) = 91g1(x) + 92g2(x) + 93g3(x) + 94g4(x), 0; € R

where g1(x) = L g2(x) = x, g3(x) = sin(x), and ga(x) = log(x).

a— — /
e —_— —
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Revisiting the Geometry of Y|(X = x) = u(x) +¢€

e All linear combinations of these four specific functions

g1, , 84 form a subspace.
po]\/nom,'J ﬂlc | 9, =X g}: s -7
e The functions g1, - -, g4 are generators of that subspace.

o If the generators are linearly independent of one another (j/ c)/t/
(orthogonal) then these functions also form a set of Y
orthogonal basis functions for that subspace. Jjwj ) (/)( -0

S

e The linear model asserts that u(x) lies in that subspace,
subspace of dimension equal to the number of basis functions
which define it.
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)
An Infinite-Dimensional BaS|s ) A

Py - > fcz)u xe )

U/

L=0o
e One famous/easy example of basis functions is the Taylor

expansion. For example, recall the Taylor expansion of &*
about the point x5 = 0, i.e.

\+ X + L)ﬁ _\.R\X) 1 1

3 4
—1—|—X—|—§x +§X —I—EX

WL

o Interpretation: exponential function is a known (infinite)
linear combination of all the (infinitely many) simple
polynomials in x.

e These polynomials form an infinite-dimensional basis for the
space of real-valued functions of a real-valued variable.
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A Model Based on an Infinite-Dimensional Basis

e More approperiately, we should write

X _ 1o 13 14
e —1+X+ix +§X —|—EX + R(x)
where R(x) is a o(x*) function, i.e. limy_ g % = 0.

e Hence, an approximation of €~ is
X ~o 0 4
e” ~ Opx° +01x+ -+ 04x

e In the data analytics world, we don't know the form of u(x)
hence cannot write the Taylor expansion (the constants!), but
we can estimate them.
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Example :

20

e
- least-squares
-+ Taylor approx

15
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I,)(,)(?/K'?/ ﬂy

e Note that the least-squares fit performs better than the Taylor

series approximation

e However, this Taylor approximation is “tailored” to x =0

(pun intended!).... Taylor approximation outperforms LS fit in
x € (—1,1) based on the fit x € (—2,2).

e Don't get too excited about the polynomial model though

(panel on the right)
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Example : e*
V()\
avre/)\c\wsl 0~ 6‘6 YO)

We can also have a look at what is “left over” thefrom our fitted
functions, i.e. the “residual function:”
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Basis Functions for e
-\

3 phppefi e B, Xx) A

N

e Im(y ~ x + I(x72) + I(x73) + I(x74)) usessimple

polynomials x% x1 x? x3, and x*

e Im(y ~ poly(x,4)) uses orthogonal polynomials which
generate the same subspace.

e The latter case form an orthogonal basis for the subspace.

e 1i(x), i.e. the fitted values are the same based on the two
implementations, but the model coefficients are different
because two different sets of basis functions are used.

L, — D>
’I—/>5 {70& r\&Pfo\\{ (x, 4 )) §,ﬂﬂﬂ(" JL,)(?,)L?, )Lq)
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Basis Functions for e*

> x <- seq(-3, 3, length.out = 1000) 6 %&% Z)(])f._—fﬁ%b)
= ~ \ \

>y <-
y exp (x) Xy Xs X4 £

/7 —
> fitl <- Im(y"x + I(x72) + I(x"3) + I(x74))
> fit2 <- Im(y~poly(x,4)) \\: B Z\}g\ XL'
> Taylor = sapply(0:4, function(x) 1/factorial(x))

> round(fitil$coefficients,3)
(Intercept) X I(x"2) I(x"3) I(x"4)
1.029 0.788 0.435 0.269 0.062

> round(fit2$coefficients, 3)
(Intercept) poly(x, 4)1 poly(x, 4)2 poly(x, 4)3 poly(x, 4)4
3.346 123.146 77.778 34.882 12.153

> round(Taylor, 3)
[1] 1.000 1.000 0.500 0.167 0.042

Note: as you add polynomial terms to fit1, its coefficients get closer

and closer to Taylor. Why? 12 /150



Example

> fit <- 1m(accel ~ times+I(times~2)+I(times”~3) , data=mcycle)

> round(coef (fit) ,3)

(Intercept) times I(times~2) I(times”3)
78.583 -17.114 0.668 -0.007
A0 =78.583 A1 =-17.114x A2 =0.668x"2 A3 =-0.007x"3
§ _ § | § | / § 7]
- O - O O O
é_ _ é | \ ‘é | é | \
1I0 2I0 3I0 4I0 5IO 1IO 2IO 3I0 4I0 5I0 1I0 2I0 3I0 4I0 5I0 1I0 2I0 3I0 4IO 5IO

Bx\)\) Y %1 X)+ % &. UAO:L E\z
\J\

) + €

Accelaration

X
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Generalization )
0
i@ﬂ\
RASEEE N

e In regression problems, u(X) = E(Y|X) will typically be
non-linear and non-additive in X.

~

o We represent u(X) by a linear model for convenience, and
sometimes out of necessity.

e Linear models are convenient because they are easy to
interpret and sometimes necessary because with small n and
large p a linear model might be all we could fit the data
without over-fitting.
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Generalization ( EH’hﬁﬁ‘

Basic Idea: Replace/augment the vector of explanatory variates X
with transformations of X and use linear models in the new space
of explanatory variables. We will use

e Polynomial regression add extra predictors in the form of
powers of X, i.e. X, X2, X3, ...

e Step functions cut the range of a variable into K distinct
regions, and calculate the mean (or other attributes) of the
response function as the fit. This is a piecewise constant fit.
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Generalization

e Regression splines extension of polynomials and piecewise
constant fit, and more flexible. The range of a variable X is
divided into K distinct regions. Within each region a
polynomial function us fit to the data. However, polynomials
are constrained so that they join smoothly at the boundary of
the regions a.k.a. knots. The flexibility of the fit depends on
the number of knots.

e Smoothing splines are similar to regression splines, but are
resulted from minimizing a residual sum of squares criterion
subject to a smoothness penalty.

e Local regression is similar to splines, but the regions are
allowed to overlap and indeed they do so in a very smooth
way.

e Generalized additive models extend the methods above to
deal with multiple predictors.
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Linear Basis Expansion

We mentioned that the basic idea is to replace/augment the vector
of explanatory variates X with transformations of X and use linear
models in the new space of explanatory variables.

Denote by hy,(X) : RP — R the m'™ transformation of X,
m=1,..., M. We then write a linear basis expansion in X

e,nfzr’oxJYOf
Y| X=uX)+e= Z ﬁm )+ €

Note that once the basis functions h,, have been determined (the
“dictionary” of functions), the models are linear in these new
variables, and fitting proceeds as before.
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Choosing the “Dictionary”

Question: How does one choose the basis functions for the model?

Answer: This is similar to a variable-selection problem. Some
options are:

e Choose them manually beforehand to limit the class of
functions (very popular) B @ BX2+ - -
. AN
e e.g. additive models: 7y
M.

u(X) = Zf:l Hj (XJ) - Zle Lme1 ,Bjmhjm(Xj) T X #KZX;L

~ = —_— —_— ‘
_

e Include all and use a variable-selection procedure

e Include all and regularize (e.g. Ridge, LASSO, Elastic Net) to
shrink the coefficients.
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Basis Functions

In a more general case, let's represent the functions h with b
(for basis). As discussed, the idea is to have a family of
functions or transformations by (X),...,bk (X) to fit a linear
model

o—l—zﬁj —|—€,

Note that while the model above is not necessarily linear in X,
it is linear in the basis functions b;, which are fixed and

known functions. ‘C 1[& seJ(
n
Examples 3 / 6{1P0\Ynommjf)

. . 2
e For polynomial regression: 1,x,x°, %,

e For piecewise constant regression: 3
d( 1(% &xx%)

\;\&\CQC\'W /7 03\)-“/K
. '\"ﬂz ‘é"u Lonc tond 19 /150
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Fitting a Model with Basis Functions

e We can use ML or LS (or other approaches) to fit the linear
model in the previous slide — predictors are ......

o All inference for linear models (t-test, F-test for model’s
significance, ANOVA, etc.) are valid.

e We have many choices for basis functions, e.g.

e Wavelets HO\(/ Ea 5"5

e Fourier

e Splines
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Agenda

Introduction to Smoothing Methods
e Polynomial Regression v N T
e Basis Expansion v/ P ) QX

Splines -
e Cubic, Natural, and B-splines

Regularization Methods

e Shrinkage Estimators: Ridge, LASSO, Elastic Net
e Smoothing Splines

Local Weighting
o DeltaNeighbourhood-and-KNN

e Kernel Smoothing
e Local Smoothing and LOESS

Multidimensional Smoothing (if time permits)
e Tensor Product Bases
e Thin-plate Splines
e Additive Spline Model
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What Is a Spline?

[ % /Qﬁr €C7L 7[1)7/—

e For a moment forget about statistical fit, and think about a
perfect fit, i.e. a model which goes through each and every

datapoint. 5 linesn SP ne

‘5 N x"":} \3:32) i

he ,
V4 (*3ds)
o3 (N o
’ o quadfiic Sphe

Q)"Ua\) \ i

> X

e A spline is a piecewise function which explains the behaviour
of this “perfect fit."
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\5\ Linear Spline
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bic Spline
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* Spllne Models

| | K/207[5 /%9—

R

\
In the wor o ata and statistical modelling, usually, we are
not interested in a perfect fit!

Consider a fixed set of knots C1, ..., k.

Spline approach could be applied to neighbourhoods with
continuity /differentiability /smoothness constraints on
neighbourhood boundaries, i.e. knots.

A regression spline is a piecewise function explaining the
behaviour of the data in each neighbourhood, subject to

continuity (and possibly smoothness) conditions at the knots.
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Order-M Spline

An order-M spline with knots &1, ..., &k is a piecewise
polynomial of order M and has continuous derivatives up to

order M — 2. "~y ’Vb,.f

Cubic splines (order-4) are the lowest-order spline for which
the knot-discontinuity is not visible to the human eye.
Therefore, there is seldom any good reason to go beyond

cubic-splines. consterl
linear
/—1 A b
In practice, the most widely used orders are M =1, 2, 477 (doic

A spline model with fixed knots is sometimes called a
regression spline.
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10

-5

15

10
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Piecewise Cubic Model

discontinuous fit at the knot continuous fit at the knot

continuous fit and 1st derivative at the knot

15
!

10
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Cubic Splines

Definition: The positive part function (x — a) is defined to be

(-a),

(x —a);y = max(0, x—a) \,

Cubic Spline: Consider the fixed and known knots ¢1,...,Ck, and
consider the basis functions 1, x, x*, x*, (x =&;)3, i=1,.., K. A
cubic spline model can be represented as 0

1
=
o
5
)
o

K
u(x) = Bo+ Pix + Pox® + Pax> + Y Bjrz(x —&j)3
j=1
e

C\J;\\)(K\kf
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Cubic Splines : Remarks

For the representation in the previous slide, we have

1) The model has K + 4 parameters.
(this is called the degrees of freedom of the model)

2) u(x) is continuous up to the second derivative.
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Degrees of Freedom

e The degrees of freedom of the model (df) is the number
of parameters required to fit the model.

e Usually, the larger the df, the more flexible the model.

e The top left panel of the plot in slide 27 has too many
degrees of freedom. The constraints imposed on a cubic
regression spline result in the more natural and smooth fit of
the bottom-right panel.
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- Degrees of Freedom —- :ﬁ jﬁﬁ;ﬁzj
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Cubic Splines

Cubic Splines: Consider the fixed and known knots ¢1,...,Ck, and
consider the basis functions 1, x, x?, x3, (x — C,)i i=1,...K. A
cubic splines model can be represented as

K
u(x) = Po+ Prx + Pox* + Pax> + Y Bira(x — )3
j=1

Cubic Spline Basis (Turncated Polynomials)
< : : : :
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Natural Cubic Splines

Natural Cubic Splines: here, we add boundary conditions to
cubic splines: the function is required to be linear at the boundary,
i.e. in the region smaller than the smallest knot of larger than the
largest knot.

Natural splines (don’t have to be cubic) provide more stable
estimates at the boundaries.

boun C\Wé

\xf\o S

T nberior KQOJV S

) N
—
\ - 4

AN

%o é\ %2 %3 %L\ S %K %K_Hx
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Degrees of Freedom of Natural Cubic Splines
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= U\)'\t
Basis Functions of Natural Cubic Splines ;”6\7“ \

Considering the model y = p(x) + €, we are interested in Y _ f’(xJ +E
modelling u(x) with regression splines. )

A natural cubic spline with K knots 1, ..., Ck is represented by K
basis functions.

Imposing the linearity on the boundaries, and using cubic splines
basis functions (with truncated power series), it can be show that

K—1
u(x) = ;) BiN;(x)
in which

No(x) =1, Ni(x) =x, Nip1(x) = dk(x)—drx_1(x)
where
(x = k)3 — (x=¢r)i
Ck — Ck

d(x) = k=1,..,K—2
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Basis Functions of Natural Cubic Splines

This rather unintuitive-looking basis has the nice property that the
second and third derivatives of each Nj are zero outside the

interval (&1, Ck).
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Basis Functions: Cubic Splines vs. Natural Cubic Splines

Cubic Splin

(@)
-

®
o

0.2 0.4 0.6

0.0

e Basis (Turncated Polynomials)

1.0

Natural Cubic Spline Basis
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B-Splines

The basis functions based on polynomials and the positive part
function is just one choice of basis functions.

This particular choice is fairly easy to understand conceptually, but
it is, unfortunately, a poor choice for computation. The problem is
that powers of large numbers can lead to numerical instability and
round-off error.

Instead, an equivalent set of basis functions but one which is
better computationally is the so-called B-spline basis, which also
allows for efficient computation even when K, the number of
knots, is large.

We will not discuss the details but refer to Elements of Statistical
Learning by Hastie, Tibshirani and Friedman (pp. 186-189).
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B-Splines or order m

B-splines of Order 1

-1 i

( Ojb_,—
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B-splines of Order 2
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FIGURE 5.20. The sequence of B-splines up to order four with ten knots evenly
spaced from (0 to 1. The B-splines have local support; they are nonzero on an

interval s ed by M + 1 knots.
wnterval spanned by + no 39/150



Fitting Natural Cubic Splines
Consider the model y = 1(x) + € where we assume KQ

=T e Tl o
then Y\N L L{V

y = Kil,B-N-(X) + € \)36/‘3
= i) /

which is a regular multiple linear regression problem with design
matrix generated by the basis functions N;, j =0, ..., K — 1.

N) - - N )

_ £ K
\ = NZ}*A whene Nz Ao _ N (T
N‘ (Xll/ R - - NK(»XII)
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Fitting Natural Cubic Splines and B-Splines in R Software

In splines package a basis matrix is provided by two functions
e ns(...) and only for natural cubic splines.

e bs(...) for B-splines

Cubic polynomials are by far the most common and, as it turns
out, are all we really need in most circumstances.

In R, in addition to any interior knots provided by the user (or
determined automatically from - user supplied arguments) two
additional boundary knots, o and (k.1 may be supplied

(Co < €1 and Ck11 > Ck). These determine the points beyond
which the lower degree polynomials (here linear) are fit. By
default, ns chooses the boundary knots at the minimum and
maximum x values in the data.
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Simulated Data —> 300 data poidfs

Consider the simulated data below:

1.5

1.0

-0.5 0.5

-1.5

Fake Data
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T e
i e
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0.0 0.5 1.0
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Basis

Basis

Basis
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B-Spline Fit

Simulated Data

: B-Spline Fit

Fake Data

| | | |
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Basis

Basis

Basis

04 08
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04 08
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Simulated Data :
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Natural Basis Functions
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Natural Spline Fit

Simulated Data :

uwh”wl

Fake Data :\./-Splin

e Fit
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Natural Spline vs. B-Spline

Simulated Data

[ [ [ [ [ [ [
Sl 0L SO0 00 SO G|
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L ocation of the Knots D]j]

Given K number of knots, where should we place the knots?

The regression spline is most flexible in regions that contain a lot
of knots, because in those regions the polynomial coefficients can
change rapidly.

It is reasonable to put more knots where the function changes
more rapidly and to put fewer knots where it seems stable.

In practice, it is common to place the knots in a uniform fashion.

Another method is to estimate the location of the knots. For
example, DiMatteo et al. (2001) used the reversible jumps MCMC
to estimate both the number of location of the knots within a
computational neuroscience context.
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Varying Degrees of Freedom

)
£ i ﬁ’

Y. -~ X |
P
The degrees of freedom depends on @(5 \\ﬁ ¢
..1
>
1) number of knots i /
2) degree of the local polynomial (in practice: 0, 1, or 3)

Model selection methods and cross-validation can be used to
choose the degree of freedom.
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Varying Degrees of Freedom

bs(x, degree= p, df=df): here R will put df — p knots
uniformly on the quantiles of x.

The df argument in the bs function is different from the degrees
of freedom which was defined on slide 34.

Here we are fitting cubic splines (p = 3) with varying df = 4,5,8
PJVK:C,‘P:? ,f:J)p_P _# oA knots

U“'\VY 7
—2 o

Te}
-1 — df=4—=k=4-3=]— L
oo di=b ks 5_3_2_300 @ng,Qoea o TR
O' — ° “‘ o *
0
0
o
> O 1
0
OI' —
0

0.0 0.5 1.0
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Varying Degrees of Freedom

You may decide to put more knots where there might be more

variability in the function.

Comparing cubic spline, knots at lines

0 : N o
~ | —— ns-natural spline L °
—— ns - extra knots Sod o ©° o :
o &
0
o
o
> o
0
<Q
0
1 | | L |
0.0 0.5 1.0
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Agenda

Introduction to Smoothing Methods

e Polynomial Regression v
e Basis Expansion v

Splines
e Cubic, Natural, and B-splines v

Regularization Methods
e Shrinkage Estimators: Ridge, LASSO, Elastic Net
e Smoothing Splines

Local Welghtlng ﬁ)\//

o Kernel Smoothlng
e Local Smoothing and LOESS

Multidimensional Smoothing (if time permits)
e Tensor Product Bases
e Thin-plate Splines
e Additive Spline Model
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Some Model Selection Criteria

©® R? and adjusted R?.

® Akaike's Information Criterion (AIC, AICs),
® Bayesian Information Criterion (BIC),

O Stepwise Method in Variable Selection,

© PRESS-type criteria l?pec/ic‘fion ere
A

More modern modelling techniques involve regularization methods
such as LASSO, ridge regression, and elastic net, some of which
incorporate variable selection in the process of parameter
estimation.
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Model Selection Techniques

The common methods of model selection are the following:

ol - T squared
e Least squares flt ﬂaﬂlmﬂ 6,00 b

>
Subset Selection / " X@
Y-rb

e Shrinkage o
\\)CL( K.ﬁé.) EgcbxlgﬂD
—

><)1 "“'/)<3t>

e Dimension Reduction
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Model Selection Techniques

Introduction to Statistical Learning by Gareth et al. (2013, p.204)
defines the last three methods as follows:

1) Subset Selection: This approach involves identifying a
subset of the p predictors that we believe to be related to the
response. We then fit a model using least squares on the
reduced set of variables.
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Model Selection Techniques

2) Shrinkage: This approach involves fitting a model involving
all p predictors. However, the estimated coefficients are
shrunken towards zero relative to the least squares estimates.
This shrinkage (also known as regularization) has the effect of
reducing variance. Depending on what type of shrinkage is
performed, some of the coefficients may be estimated to be
exactly zero. Hence, shrinkage methods can also perform
variable selection.
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Model Selection Techniques

3) Dimension Reduction: This approach involves projecting the
p predictors into a M-dimensional subspace, where M < p.
This is achieved by computing M different linear
combinations, or projections, of the variables. Then these M
projections are used as predictors to fit a linear regression
model by least squares.
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Shrinkage Methods

We will discuss the following three shrinkage methods in variable
selection for regression:

e Ridge regression
e LASSO

e Elastic net

All of these methods fall under shrinkage or regularization methods.

n

p 2
RSS(A):=Y (vi—Bo— Y xi;) +A x pen(B)
i=1 =1 NV
N _ Penalty

N
Loss Function
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Ridge Regression

Definition: The ridge regression estimate of a linear model is

defined as idge (JJ%

N i n
B = =arg mﬁn RSS(A), \/@?2/

where /V

RSS(A) = {i (y,- — Bo — ixij-ﬁj)erAiﬁf}

i=1

where A > 0 is a tuning parameter which determines the
bias-variance trade-off. This problem can be written in an
equivalent form as

~ridge i n P 2 9
B = argmlnz (y;—ﬁo—ZXUﬁj) s.t. Zﬁj <t
i=1 j=1

p j=1

where there is a one-to-one correspondence between A and t.
59 / 150



Ridge Regression (cont’d)

Note that Ef &6\9{&
RSS(A) = {Zn: ()/i — Bo — ZXUIBJ> + A iﬁj}

= (y—=XB)"(y—XB) +AB'B

Calculating the derivative of RSS(A) w.r.t. the vector
B = (B1,..., Bp), setting it to zero, and solving the equation, we
get (show this):

~ridge

B

where [ is the p X p identity matrix.

= (XTX+AN)"IXTy

It turns out that BO =y — Zf:l YBJ-, so centralizing the columns
of X (i.e. xj —Xj, j=1., .., p) results in Bo = y. Centralizing both
y (i.e. ¥; —¥) and the columns of X results in Bo = 0.
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Example

The market value of a house should be a function of a number of
features of the house and a model for sale price as a function of
these features can be useful.

X1 | Current taxes

X | Number of Bathrooms

X3 | Lot size

X4 | Living space

Xs | Number of parking spaces
X6 | Number of rooms

X7 | Number of bedrooms

Xg | Age of house

Xg | Number of fireplaces

Y | Actual sale price
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House Price Data-set: Ridge Regression

Shrinkage of parameters (Ridge)

¥ beta2
beta3
o= T betad
beta5
oo T~ T beta6
% beta7 2
T - beta8 ’f
S rmmemmegs beta9 v 4 \9
1.7 s

-1
|

V)\

C/’@

-2

lambda

Note that the some of the parameter estimates get very close to 0,
but they are not exactly 0, hence ridge regression does not perform

a direct variable selection.
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2

LASSO ]Qic)je: i%
e

Definition: The LASSO regression estimate of a linear model is
defined as

~lasso P 2 :
B = argmin {21 ()/i — Po— ;w[ﬁ) +A ; ﬁj}

where A > 0 is a tuning parameter which determines the
bias-variance trade-off. This problem can be written in an
equivalent form as

~lasso . n P 2 P
ﬁ = argm‘Ban(y;—,Bo—Zx,-leJ) S.t. ZLBJ‘ <
i=1 j=1 j=1

~

where there is a one-to-one correspondence between A and t.
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N LASSO (cont'd 2
- LA g\\ iF <)

L < \& ﬂ?
/%5 /5

e Comparing LASSO to ridge regression, we see that the

-
constraint is on the absolute value of the parameter values,
not the squares.

e Unlike ridge regression, LASSO does not have a closed form
~lasso
solution for the parameter estimates 8

e The Ly penalty used in LASSO works as a variable selection as
the shrinkage forces some of the parameter estimates to be
exactly 0.
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House Price Data-set: LASSO

Shrinkage of parameters (LASSO) 2
Lr) ] ‘%
— betat
< beta2
- beta3 /—\
e T I S - beta4
/\ beta5
~~ds7 beta6 ¢
g beta7
= beta8
".. l|‘ ........ beta9
o - -"'.’/ NEIIL
-1 LO\SS/O
T
o
|
| | | | |
0.0 0.5 1.0 1.5 2.0

lambda

Note that as the penalty A increases, the parameter estimates are
shrunk to 0, hence Lasso performs a direct variable selection.
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-1

-2

Ridge vs. LASSO

Shrinkage of parameters (Ridge) Shrinkage of parameters (LASSO)

\ o \\
; — betatl | betat
---- beta2 <+ 4 ---- beta2
' beta3 ! beta3
L beta4 ™ [ beta4
i beta5 v beta5
Yy TS~ beta6 47 = beta6
beta7 £ Yo beta7
beta8 e beta8
~~~~~~~ beta9 - beta9
O — .r-'/ SN
"I_ —
S
| | | | | | | | | |
0 2 4 6 8 0.0 0.5 1.0 1.5 20

lambda lambda

66 / 150



Standardized Coefficients

LASSO and Variable Selection

LASSO
0 1 2 5 6 8 9
~
lf_) | \ _ -
o
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| 9-; .. —
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. JdJFF
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Variable Selection Using LASSO (from ISLR Book)

Consider a regression model with two explanatory variates, hence
parameter vector B = (B1, B2).

FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |Bi]| + |B2| < s and B} + B2 < s, while the red ellipses are the contours of
the RSS.
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Elastic Net Regression

Definition: The elastic net regression estimate of a linear model is
defined as

p

B := argmin i (y,' — o — i Xijﬁj)2 +A ), [(1 —a)p; + “!51\]
j=1

B =

where A > 0 determine the overall complexity of the model, and
the elastic net parameter a € [0, 1| provides a mix between ridge

regression and the lasso. oSO 1 ifjé\
SV

The package glmnet is used for Ridge (alpha=0), LASSO g
(alpha=1), and Elastic Net (« € (0,1)). /
Ridge & %L;/ff

, &

While parameters a and A can be chosen via cross-validation, | ;s
typically a grid search is used. The grid for a is usually coarse @'\A(}Qa&x\]
(three to five values) while that of A is much finer (a few hundred ¢
values).
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More Details on Lasso, Ridge, and Elastic Net

e ISLR : Chapter 6 (6.2, and ideas from 6.4, and 6.6)
e Videos by the authors available in this link.

o ESL : Chapter 3 (3.4)

e Statistical Learning with Sparsity

There are variations of LASSO (grouped LASSO, fused LASSO,

etc.) which are beyond the cope of this short course. See the last
reference above for details.

Next, we take the regularization idea to spline models, i.e.
smoothing splines.
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Agenda Z
g /Mllq Z(Jv}d{’() + /\ /Oeﬂ M}
Introduction to Smoothing Methods /3

e Polynomial Regression v
e Basis Expansion v

Splines
e Cubic, Natural, and B-splines v

Regularization Methods

e Shrinkage Estimators: Ridge, LASSO, Elastic Net v
e Smoothing Splines

Local Weighting
o DettaNeighbotirhood-and-KNN

e Kernel Smoothing
e Local Smoothing and LOESS

Multidimensional Smoothing (if time permits)
e Tensor Product Bases
e Thin-plate Splines
e Additive Spline Model
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Location/Number of Knots Splines

Whether B-Spline or natural spline is used, we still need to decide
on the number and locations of the knots.

Is constant | = 2, . k.

e Equal-distance quantiles: Distribute the knot§ on quantiles of
the data. One choice to distribute k knots is to locate them

at k+r1 I =1,..., k quantiles.

e Corss-validaiton: following a regime for location of the knots,
e.g. equal-distance quantiles, you may use cross-validation to
choose the number of knots.
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e Smoothing Splines
Lf@ﬁ: Y= P+ &

Knot selection can be avoided by recasting the problem. Note that
we would still like to use the Splines.

We would like to estimate the function 1 (x) which minimizes
RSS = Y7 1 (vi — u(x;))?, but that is also smooth.

We can let the data “smooth itself,” i.e. control the smoothness of
the fit by regularization. In other words, we will penalize the RSS
for overfitting or roughness.

In fact, rather than defining smoothness (which is what we want),
we will define what we don’t want, namely a non-smooth or
“rough” function. But how to define “rough?”
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A Measure of Roughness
Suppose p(x) is, at least, twice differentiable. 5(>//)(/5/U//(/+g

1’ (x) measures the slope. A function with any slope can be

smooth.
/N

A function with frequent or abrupt changes in the slope
though would be rather rough.

The second derivative u”(x) measures how quickly the slope
changes at any given point x.

Large values of (4”(x))? indicate that there is an abrupt
change in slope at the point x. Therefore, one possible
measure of roughness might be

/(ﬂ”(t))th

The smaller is the integral, the smoother is u(x).
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Smoothing Splines

A smoothing spline 7i(x) is a function estimate of u(x) obtained
by minimizing ou Lness (}jjﬁ‘
RSS(u.A) = Y- (i — nlx))* + A [ (1'())° e

= J(yog;/cft

where A > 0 is a fixed smoothing parameter (also called a tuning
parameter).
Effect of A:

e A=0:—» /0 roujﬁnc?j /t”mp?[/——k /ﬁrﬁe(f 79//

(xi)=Y, =LY N
e A=o00: OLS ’657[/‘/1/10\%@ /J Jl :
Leayt S5qvary *@oc lineor moc!lf ﬁ;: ﬁ Tﬁx(

e Lagrange multiplier?

> has the saume 36/01\/0\,«*.

Cc)/ -~/ n
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The “Smoothest” Interpolator ! N
7 Pt

~ N,
] >
X

Theorem: Suppose f(x) : R — R is a real function whose value
is known only at a set of n distinct points xi, ..., X,. The points
(x1, f(x1)) ..., (xn , f(xn)) can be used to determine natural
cubic splines s(x) such that s(x;) = f(x;), i = 1, ..., n. For any
differentiable function g(x) passing through the points

(x;i , f(x;)), we have

/OO (s"(x))2 dx < /OO (g"(x))2 dx

—00 —00

This means that the NCS is the “smoothest” interpolator.
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Smoothing Splines and Natural Cubic Splines

For any fixed A, the solution to the penalized residual sum of
squares problem

min Z (vi — 1))’ +A/ (u”(t))zdt]

Foliza

is @ natural cubic spline with knots at every unique value of
Xj.

In other words, the solution requires ji(x) to be of the form
i(x) =) Ni(x)B,
j=1

where the N;(x), j =1,...,nis a set of n basis functions for this
family of natural cubic splines.
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Choosing A

In smoothing splines there is a knot at every point x;, i =1, .., n,
so we don't need to worry about choosing the number and/or
location of the knots, but we have to choose A.

The tuning parameter (penalty factor) A can be chosen using
cross-validation

We will show, through connecting A to a measure of complexity
(or roughness) of the fitted model, that the LOOCV can be
simplified to tune A in a computationally efficient way.
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Degrees of Freedom

X
Recall multiple linear regression Y = XfB + €. The degrees of
freedom (number of parameters) of this model is p + 1: # of

explanatory variables + 1 (+1 for Bo). J/ \

7
Recall that f
XB=X(XT"X)"*XTy = Hy

S} —
S pn (1) 3,04
where trace(H) = p+1—=> e (H) = CJ‘E B /

The hat-matrix H is a projection matrix, i.e. it is idempotent

H? = H. H;’\ g\/
Observation: trace(H) = Rank(X) is the dimension of the
projection space.
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(Effective) Degrees of Freedom Method
We have . ‘i’{\ﬂ/ W}?
io= (ACa)fiGe). i) SO
— ﬁdi; S&j*ﬁ*i ] &g*OJB’
T —1 OS'\'\"\“Q _;S\
= MWW +A00) My g il =
_ <;¥;A,Y' ma %y

hence a smoothing spline is a linear smoother.

(—\> S’/\xS 7& S‘\ "“FQC{- SAX5\<<S
S, is not a projection matrix (why?), hence we cannot say that the
dimension of the projection spate (df) is trace(S, ).

However, by analogy, we can define the effective degrees of
freedom of a smoothing spline to be

dfy, = trace(S,) = Z{SA}”
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Leave-One-Out and Generalized Cross-Validation

There is a monotone decreasing relationship between A and df,.
This means cross-validation can be done on either A or on df).

e LOOCV:

uafe‘ n 5 n . 77 (x: 2
58 sty - £ -0 - £ (1202

=1

Some ,@/mnc% vee HSR instead (nof R Jrl\o\zj\\)

e Generalized Cross-validation:

RSScev(A) = Zn; <1 MHZAC(G)EIgﬁ)

=1
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Example : Simulated Data
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LOOCV : Simulated Data

> sm.LOOCV <- smooth.spline(x, y, cv = TRUE)
> sm.LOOCV

Call:

smooth.spline(x = x, y =y, cv = TRUE)

Smoothing Parameter spar= 0.6402688 lambda= 7.07313e-06
(14 iterations)

Equivalent Degrees of Freedom (Df): 25.82318

Penalized Criterion (RSS): 12.62976

PRESS(1.0.0. CV): 54.50422

> sm.LO0OCV$lambda
[1] 7.07313e-06

> sm.LOOCV$dAf

[1] 25.82318
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GCV : Simulated Data

> sm.GCV <- smooth.spline(x, y, cv = FALSE)
> sm.GCV

Call:

smooth.spline(x = x, y =y, cv = FALSE)

Smoothing Parameter spar= 0.5603612 lambda= 1.87198e-06
(11 iterations)

Equivalent Degrees of Freedom (Df): 33.9024

Penalized Criterion (RSS): 11.7393

GCV: 1.65062

> sm.GCV$lambda
[1] 1.87198e-06
> sm.GCV$df
[1] 33.9024
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Cross-validated Fits : Simulated Data

Smoothing spline , CV

=1 — Loocv dPz26 o
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Note

Note: In the interest of time, the material from here up to slide
103 can be skipped.

This material discuss the geometric and linear algebraic details
of smoothing splines.

(A
\},5
=
g

J

®
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Eigen Decomposition

Consider the square matrix A, with eigenvalues Aq, ..., A, and

corresponding eigenvectors ug,...,u,. Let U = [ul , U, ..., up]
and A = diag(A1, ..., Ap). Then A can be written as

p
A= UAU! = Z)\,- u;u; — eigen decomposition
i=1

Properties:

e If Ais symmetric, then the eigenvectors uy,...,u, are
orthogonal.

o A2=UAU
o If Ais a (real) symmetric matrix, then

e U 1=UT hence A= UANUT — A= Zp /\iUiU,'T
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Singular Value Decomposition
|f

e A is not a square matrix, or

e U is not on'invefible matrix, e.g. A :(é 1) then U~! does not
exist

then A does not have an eigen decomposition. For such cases, we
use the singular value decomposition of A.

Consider the matrix A,xp, where (n > p). The singular value
decomposition (SVD) of A is the product of three matrices

p
An><p = Unxn Z‘n><p Vp7;<p — ZUiUiV,T
T =1
u=1 A
U n (j VV__Z) <J

where U and V have orthonormal columns and X :(diag(al';“’ap)).
n—p)xp

If Ais a symmetric (positive semidefinite) matrix, then SVD and
engen decomposition of A are the same thing.
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Regression : An Eigen Decomposition Approach

In the regression model Y = X + €, the hat matrix
H= X(XTX)"1XT is the projection matrix.

The n-dimensional fitted mean is i = Hy: the orthogonal
projection of y on to the space spanned by the columns of X,
i.e. colsp(X).

Assuming p1 > p2 > -+ > pp > 0 are the eigen-values of H
with corresponding eigen-vactors uq, ..., u,, we have

n n n
H:Ep,-u,-u,-T :ﬁ:Zp;u;u,Ty:Zu,-p,-<u,-,y>
i=1 i=1 i=1

Since H is a projection matrix (idempotent), the eigenvalues
of H are 0 or 1. It can be shown that the first r eigenvalues
are 1 (the rest are 0) where r = rank(X).
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Regression : An Eigen Decomposition Approach

e The general case of cubic splines is the same as regression.

e Replace the design matrix X with the basis matrix B and the
corresponding projection matrix is Hg = B(B"B) !B,

e When using bs(...) orns(...) in R, we could specify the
degrees of freedom df and have the function choose the

appropriate number (and location) of the knots with which to
build B.

e Can we parameterize a smoothing spline in a similar way?
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Smoothing Splines : An Eigen Decomposition Approach
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Smoothing Splines : An Eigen Decomposition Approach

Assuming the form u(x) = NB, where N is the n X n matrix of
basis functions calculated at xi, ..., x,, we have

RSS(u, A)

Z Xl _1_/\/ //

= (y— NB) (y—N,B)+7\.3TQN,3
= (y—NB)"(y—NB)+ Au" Ku

where " = (u(x1), ..., p(xn)).

The fitted model /values is/are

po= Sy ,lje"‘mQUf
A
Gy whit
= (h+AK) 1y Legend 07 9\

\/\/e can wm[e }U IZ’— ‘ﬂ(")ul NT where c////) ore +Lz

-~ c':’/-— wn 93/150
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Smoothing Splines : An Eigen Decomposition Approach

e The difference btween this and p-order splines is that the
eigen-values p;(A) are not just zero or one. The two largest
are 1 (corresponding to di = d» = 0) and the rest are less

than one. m&\aﬂy CZ“Q( Jedm‘lfve> is O Wﬁv
formou‘)lmeﬁ CO’\d()M'IL & Il\ﬂeﬂler

e Since Hp is a projection matrix; (potentially) r directions are
selected and the rest are dropped. That is the nature of a
projection operator and so this kind of spline is sometimes
called a projection smoother.

In contrast, 5) x S) <X S, (not idempotent, in fact, the
right-hand-side exceeds the left-hand-side by a
positive-definite matrix). S, x S, has smaller eigen-values
than the original S,. Because of this shrinkage, the smoothing

spline is sometimes called a shrinking smoother.
3

Shriakage
Qigem volwes 6_1_\3\2“ /107L a/WCLJS O 0¢ _1_ => l{Z(@ => 4
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Effective Degrees of Freedom and A

e The value dfy = trace(S)) is called the effective degrees of
freedom. We have

d 1
df, =
;Z;; 1+ Ad,

e df) is a decreasing function of A

e As A — 0: le:; —> i:/()é;):(jc. (PeﬂpCCfW[f‘})

S

/

Cp This mean§ NO Jyro'e joq
e As A — oo :
L,7> AQ: 4 Siwgle \\near f%ﬂw)ﬁ)‘Or\ with SA beaé\y e RO\‘\‘

S\ —> : : : \
e To get some &inde’ of what basis functions different values ofmrh X
A correspond to, we could get the eigen decomposition of S,
for our simulated data example.
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Simulated Data , dfy = 11

. . Plot of the eigen values of S,
Smoothing spline, df = 11
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dfy = 11 since sum(eigen(8)) = sum(diag(S)) = 11.00184.

e 0;(A) drop off very quickly: components of y in the direction
of the smallest eigenvalues are shrunk effectively to zero.

e What do the eigen-vectors corresponding to the largest
eigen-values look like?
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Eigen-vectors uy, ..
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Eigen-vectors us, ..
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Eigen-vectors ug, ..., u;p of S, for dfy = 11

i= 9;rho=0.6855 i= 10; rho =0.5529
c w c w
S o] 2 o]
© ©
£ s
[} ()
D 10 D 1
O o O o
I I I I I I
0.0 05 1.0 0.0 05 1.0
X X
i= 11;rho =0.4472 i= 12 ;rho =0.3719
c w c w
S o 2 o]
© ©
5 o S o
"E o_/\—m\m\ HE O_/\/\/\M/
[} ()
2 w1 D2 10
O o O o
I I I I I I
00 05 1.0 0.0 05 1.0
X X

100/ 150



Farther out Eigen-vectors of S, for dfy, = 11

i= 50 ;rho =6e-04 i= 60 ;rho=2e-04
c c w
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© ©
-5 O—WM’VW\/\WWVWWV— E O—MW“WWWN\AWW
C o C o
(] (O]
D 0 D 1
O o O o
I I I I I I
00 05 1.0 00 05 1.0
X X
i=150;rho=0 i=200;rho=0
c c w
S o 2 o]
© ©
2 2| 2 S -
C o C o
(] (O]
2 w1 D2 10
O o O o

| | | |
0.0 05 1.0 0.0 05 1.0

101 /150



Agenda

Introduction to Smoothing Methods

e Polynomial Regression v
e Basis Expansion v

Splines
e Cubic, Natural, and B-splines v

Regularization Methods

e Shrinkage Estimators: Ridge, LASSO, Elastic Net v
e Smoothing Splines

Local Weighting
o DeltaNeighbetrhood-and-KNN

e Kernel Smoothing
e Local Smoothing and LOESS

Multidimensional Smoothing (if time permits)
e Tensor Product Bases
e Thin-plate Splines
e Additive Spline Model
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Local Neighbourhoods
Yy T

_

Regular splines: prespecified knots .

Smoothing splines: fit the data more locally, i.e. knots at every
unique point x;

Alternative: Fit a model which focuses on each and every x
locally, i.e. it fits to a “neighbourhood’ of x.
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K Nearest Neighbour Fitting
=

The simplest neighbourhood method is to fit a local average at
each neighbourhood of x, i.e. Ne‘j‘\bour}m%[

m Ave(y; | x; € Ny -
H(x) = (vi | xi € ( ) \ix-?)

in which Ny(x) is the set of k points nearest to x in squared

——

distance. -
(don't mix this up with Ny: constant distance neighbourhood)

To do this, we will find the k nearest neighbours of x for all values
of x in the dataset.

The function knn.reg from the package FNN will compute this
average for every point x; in the data.

Let's apply this to our simulated dataset.
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Choosing K

e Small K:;

o complex/flexible model
e high variability (wiggly)

e low bias (potential for “chasing the noise”)

e Large K:

e inflexible model
e low variability (smooth)

e high bias

One strategy is to choose based on MSE/PRESS/R? (no test
data), or we can do cross validation (with test data).
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Increasing the Complexity of Local Fits

e As the size of local neighbourhoods increases, the smoother
becomes the fitted function.

e \We might also replace the averages with any fitted model
based on the k nearest neighbours of any location x.

107 / 150



Local Weighting

You may think of local fitting as a model which uses all points, but
those outside the local neighbourhood have zero weight (in the
sense of weighted least squares).

east-squares fit on the k nearest neighbours is a least-squares fit
on all of the data but with weights that are 1 for points inside the
neighbourhood and zero for points outside the neighbourhood.

Locally Weighted Least Squares (k=30)

Lo . o 4
— | = - Weight 1 for all data o s
—— Non-zero weight for pink gofv o o &
Q|
-
1\
0 | |inear
o 'l"
hou

- _

L

o

[

ok

-

|
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Local Weighting

The local least squares with zero-one weights can be written as

[ N
i(x) = argmin Z W(X,Xi)r,2]

H =1

[ N
— arg mﬂin Z W(X,Xi)()/i - P‘(Xi))2]

| i=1

where
1 x; € Nbhd(x) = Nj(x)
w(x, x;) =
0 otherwise.
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Local Weighting

Alternatively, we might not worry so much about the
neighbourhood but rather choose the weights more judiciously.

Since we are trying to fit locally, we could choose higher weights
for the closer points and lower weights for those farther away.

For example, we might consider weights that are proportional to a
function, say K(t) having the following properties:

e [K(t)dt=1
e [t K(t)dt=0
o [t? K(t)dt < oo

The function K(t) is called a kernel function.

Assuming also K(t) > 0, Vt, then K(t) could be a symmetric
density function with mean 0 and finite variance.
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Example of Kernel Functions

1) Epanechnikov kernel:
2 (1—1¢?) for |t] <1
K(t) =
0 otherwise.

\ 2) Tukey's tri-cube weight:

j\«OAHI (1—1t3)° for |t <1
~\ K(t) =

Normaﬂigi'ﬁ fuder ?‘% 0

3) Gaussian Kernel:

otherwise.

K(t) = é_ﬂ exp <_%2> |
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K(t)
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Example of Kernel Functions

Kernel Functions

—— Epanechnikov
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Kernel-weighted Average (Kernel Smoother)

t\g.\\
e

%
Since we are interested in applying these functions locally, the
kernel function K(-) is applied not to each x;, but rather to the
difference x; — x.

Similarly, a means of controlling how quickly the weights diminish
for any kernel is to introduce a scale parameter, say h > 0, called
the bandwidth.

Putting these together, we evaluate the kernel function at *==.

/
e snolles A, He more oed " e 44
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Kernel-weighted Average (Kernel Smoother)
Our weight function would be calculated as

K (552) % e
k() Do

w(x, x;) =

Assuming the squared error loss is used, and p is modelled as a
piecewise constant function, the previous piecewise constant
estimate

H(x) = Ave(y; | x; € Nk(x))

Is replaced with the Nadaraya-Watson kernel-weighted average:

R n n K (Xi_X)
Alx) =) wlx,x)yi =) hX__X Yi
izzl i=1 \ Y1 K (JT)
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Kernel Smoother : Local Linear Regression

Piecewise constant fit may be replaced by linear, quadratic, ...

models.
n 2
ﬂ/?/oféj 7/7” o x=xo 3 Min [Zw(x""“) ((YL"O(Q")—/Q (x.Dx,')j
Alr), Pr)* e

w[fc/ /\&50/711 % 2((10/46 Px).

= /“(xo):g(xe)f /é(xo) X
Detoe o= (1) = bl = O, ) _
Bﬂxz : mﬁressio« V\O\AVV‘\X —> (,'76(/'00\}4'7[8 'S A()Ci/

\/L//)xn(x") : NxO c(l'adOf\J m0\+\’l‘)( — \/(/Lc ()(o):- C(j EXo)DCi)
~ T~ N T Jﬁ:@*&\
=7 \*(%) = b P = \g\m) [B’W(xo)ej 57;(/(19/0%

= _Zzl-ga(lo)éj; — \inea SmosTher
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Local Weights

Consider the weights

K (%)
i K (%)

where there are many choices for the kernel function K, some of
which are Epanechnikov, Tukey's tri-cube , and Gaussian.

w(x, x;) =

We can fit a weighted least squares model using these weights.

Note that the fitted model depends on the value of x. The idea is
that the model is evaluated at many points x.
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e [he smaller the bandwidth h, the more structures are

lllustration - Effect of Bandwidth A

captured, i.e. the more flexible is the model.

e Increase the number of points x to get a more precise plot of

the fit.

Locally Weighted Fit, h = 0.25

Locally Weighted Fit, h =0.15
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Comparison to the True Model

LoWeSS Fit (h=0.05) and True Model
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What Remains?

The naive locally weighted sum of squares estimators have some
difficulties which require attention:

e Choice of bandwidth h.

e Also, we only looked at x locations but one might choose a
proportion of the nearest x values.

e Choice of what weight function (kernel).

e Perhaps a more robust choice that actually gives zero weight
to points that are far away.

e What about the ends?

e |t seems that we can only estimate using data from one side of
the endpoint. Should that @ffect the choice of bandwidth
there? Or the weight function?
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Using KNN and Local Weights Together

The naive locally weighted sum of squares above did not
define neighbourhoods, but rather used the scale parameter h
to determine how weights would diminish.

This means that where the data is densest in x, more points
will appear in the estimation than where it is sparser.

Let's impose the condition that only k points in a
neighbourhood of x may have non-zero weights. all points
outside of the neighbourhood will have zero weights.

We will also use some kernel function to downweight points in
the neighbourhood. The kernel will again be evaluated at

(x; —x)/h , but now we will choose h to be a function of the
maximum distance |x; — x| over all points in the
neighbourhood.
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LOESS:
Z,Oc:a//y 557‘/'07017‘66/ ScaﬂEfP 0

e \We can use the function loess from the default-loaded

stats package or the function locpoly from the
KernSmooth package.

e Here, we focus on the function loess.

05 1.0 15

-0.5

loess Fit — span=0.75

05 1.0 15

loess Fit — span=0.15

>m 05\\\‘ “%
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Notes on loess

The loess function uses a local neighbourhood determined by

e either its argument span (default=0.75) as the proportion of
points, say «, taken as the local neighbourhood (roughly KNN
with k =~ n X «)

e or its argument enp.target, this being the “number of
equivalent parameters” in the model - like the effective model
degrees of freedom, a measure of the complexity of the model.
This too produces an equivalent proportion a of points in the
local neighbourhood.
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Notes on loess

Given the parameter & < 1, the default weighting is given by
Tukey's tri-cube weight function

[y for [t <1
K(t) = { 0 elsewhere

For the ith point in the neighbourhood, we take

|xi — x|

ti = :
I MaXje Nbhd(x) X — x|

If « > 1, the above denominator is replaced by

(&'P) x  max |x;— x|
JE€Nbhd(x)
where p is the number of explanatory variates in case there is more
than 1. (in this case, |x; — x| is replaced everywhere by the

Euclidean distance ||x; — x||)
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Notes on loess

The function loess is not restricted to fitting local lines and can
fit degree 0, 1, or 2 polynomial locally (in practice, typically degree
1 or 2 is used). Its default is 2.

The fitting mechanism is given by the parameter family and can be
either gaussian (the default), which will use least-squares to fit the
local polynomial, or symmetric which will begin with least squares
and then perform a few iterations of an M-estimation using
Tukey's bisquare weight function.
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Some Models for y = u(x) + €
e Cubic Splines:

K
H(x) = Bo+ Prx+ Poax® + Pax® + ) Bira(x — )3
j=1
e Natural cubic splines (solution to smoothing splines):
i(x) =) BiN;(x)
j=1

o Kernel regression (e.g. loess linear model):

i1(x0) = Bo(x0) + P1(x0)x

where B = (Bo(xo) , Bl(Xo)) is computed from

( K<%) )) (Yi—ﬁo(XO)—ﬁl(Xo)X)2

Y1 K (Xj;XO
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Comparing the Linear Smoothers

All of the above three methods are linear smoothers (why?) hence
they have the same form. We should be able to look at them in
much the same way— no matter how they were motivated or
derived.

As an example, local regression smoothers like 1oess were built on
kernel functions which gave higher weight to observations nearest
the point x = xp of interest. We might expect, therefore, that in
computing the fit at any given x that the coefficients multiplying
any y would be higher for a y; whose corresponding x; was closer
to xg than for one which was farther away. To check this, we might
have a look at the coefficients of each y as a function of x.

How about other methods? Do they behave the same way?
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Coefficient of y as a Function of x

A linear smoother has the form

where, depending on the model (splines, kernel regression, etc.),
the smoothing matrix S will change.

Note that common R packages/functions for the methods
discussed so far do not output the smoothing matrix automatically,
so you have to manually code it.

The it row of S is the coefficients of y = (y1, ..., yn) " for x = x;,
i.e. 71(x;) = S;y where S; represents the i*" row of S.
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We will work with the following simulated data as a working

example.
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Coefficient of y as a Function of x For loess

Coefficient of y

Note that the coefficients concentrate around the x value.

0.010 0.015 0.020

0.005

-0.005 0.000

Two rows of smoother matrix

I 1 I I
0.0 DC-’*O‘?’Q 0.5 #0363,

T (=113
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Coefficient of y as a Function of x For Smoothing Splines

Two rows of smoother matrix

0.010 0.015
| !

Coefficient of y
0.005
|

-0.010 -0.005 0.000

| ‘ |
00 o= 02Ul 05 #=0363 10

=qp x i=143

As was the case with the local regression, the coefficient of y; is
higher the closer x value is to the value of x;.
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Coefficient of y

Coefficient of y as a Function of x

0.000 0.005 0.010 0.015 0.020

-0.010

Two rows of smoother matrix

-

Smoothing Splines coéfficients for x=0.212
Smoothing Splines coefficients for x=0.763

- loess coefficients for x=0.212

loess coefficients for x=0.763

T T
0.0 0.5

1.0
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Decomposing the Smoothing Matrix

Recall the eigenvalue decomposition of the smoothing splines. We
can do the same for any linear smoother.

In the general case of linear smoothing, the smoothing matrix may
not be symmetric. As a result we will work with the singular value
decomposition of the smoothing matrix S.
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Decomposing the Smoothing Matrix

We decompose any smoother matrix S as

S=uUD,Vv'"

vlu=1,=Vv"v.
The smooth can now be written as
i = UD,V'Ty
= Yi-iUipi <Viy >

which separates into the basis vectors U;, the singular values p;

and the orthogonal component of y along the direction vectors V;.
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u value

0.0 0.4

-0.4

0.0 0.4

-0.4

Basis Functions (first 4)

Basis 2

—— Smoothing Splines , rho = 1
= = loess, rho=1.023

T
0.5 1.0
X

Basis 4

—— Smoothing Splines , rho = 0.939
loess , rho = 0.997 /

Basis 1
—— Smoothing Splines , rho = 1 <
- = loess, rho =1.026 o
o a
ittt = o |
= > o -
-}
<.
o -
T T I T
0.5 1.0 0.0
X
Basis 3
. . _ <
—— Smoothing Splines , rho = 0.99 . —
= = loess, rho =1.002 o
o a
2 2-
> O
-}
<.
o -
T T I T
0.5 1.0 0.0

138/ 150



u value

u value
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u value

u value
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Conclusions

Even though smoothing splines were derived from a global
minimization, their linear smoothing structures turns out to work
in a similar way to the local model loess. We've observed the
following trends in both loess and smoothing splines for our
simulated data:

e Coefficients of y: The coefficient of y; is higher the closer x
value is to the value of x;.

e Singular values: Their plot has an “elbow-shape,” where
singular values die off quickly. How quickly the singular values
converge to zero depends on signal to noise ratio in the data.

e y components < V;, y >: Similar pattern to singular values
for the same reason.

e Basis functions: The orthogonal basis functions increase in
complexity as i increases and the higher frequency basis
functions are largely obliterated by the small singular values

and y components.
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Agenda

Introduction to Smoothing Methods

e Polynomial Regression v
e Basis Expansion v

Splines
e Cubic, Natural, and B-splines v

Regularization Methods

e Shrinkage Estimators: Ridge, LASSO, Elastic Net v
e Smoothing Splines

Local Weighting
o DeltaNeighbourheood-and-KNN
e Kernel Smoothing v
e Local Smoothing and LOESS v

Multidimensional Smoothing (if time permits)
e Tensor Product Bases
e Thin-plate Splines
e Additive Spline Model
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Multidimensional Splines

e The spline models have been designed to fit a curve to a
single explanatory variate x.
e What if we have more than one explanatory variate?

e There are several ways to generalize the splines curve-fitting
method, a few are;

1) Using tensor product basis
e This is a generalization of regular basis expansion models (e.g.
cubic splines) to higher dimensions

2) Using a multivariate high curvature penalty: thin plate splines
e This is a generalization of smoothing splines to higher
dimensions

3) Using an additive spline model
e This is another generalization of smoothing splines to higher
dimensions, which imposes additivity on all components of the
model.

We will not discuss the details of these methods, but simply

introduce them.
143 /150



1) Tensor Product Basis

o Consider X = (X1, X2) € R?, and the basis functions hj (X;),
k =1, ..., M; representing functions of coordinate X, i.e. two
sets of basis functions one to represent coordinate Xj and the
other to represent coordinate X5.

e The My x M, dimensional tensor product basis is defined by

gjk(Xl,Xg) = hlj(Xl) h2k<X2), _] = 1, ceey Ml, ,k = ]., . M2

and can be used for representing a two-dimensional function:

M; M,

u(xt, x2) = Po+ Y Z Bikgik (x1, x2)

j=1k=

e The coefficients can be can be fit by least squares.
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1) Tensor Product Basis

e Tensor product basis can be generalized in the same fashion
to the d-dimensional case (d > 2), but the effective model
degrees of freedom grows multiplicatively with the number of
explanatory variates (curse of dimensionality).

e There are methods to select only those tensor products which
are deemed necessary by least squares (e.g. MARS).

b
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1) Tensor Product Basis : a 2-dimensional example

Ql) \\G&K1'>

W

\uﬂ”
X

\u@)

gy

FIGURE 5.10. A tensor product basis of B-splines, showing some selected pairs. _J2 E g
Fach two-dimensional function s the tensor product of the corresponding one
dimensional marginals.
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2) Thin Plate Splines

e We can generalize the one-dimensional smoothing splines to
higher dimensions as well.

o Consider the data (x1, y1),....(Xn , ¥n) where x; € RY, and
we seek a d-dimensional regression function p(x).

e We can set up the problem as C{ J
d-climenjon

min {Zn; (y,- —/];(;3)2 —|—)\J[‘u]}

oliz

where J[u] os am approperiate penalty function to stabilizing
a function in RY.
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2) Thin Plate Splines

e A natural generalization of the one-dimensional roughness
penalty for functions on IR? is

-2 G () e

e The solution has the form

R d=2
u(x) = Bo+ P X+2“J

where h;(x) = ||x — x;||? log (||x — x;||). Using this format of
1(x) in the penalized least squares optimization problem
(previous slide), the parameters can be estimated.
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3) Additive Spline Models

The additive spline models are a restricted class of
multidimensional splines.

Suppose p(x) = Bo + p1(x1) + ... + pg(xg), and that each of
the functions y; are univariate splines.

One natural penalty for the smoothing splines then is

I = I+ -+ pdl = Sy [ 1 () dy

This method can be naturally extend to ANOVA spline
decompositions.
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Agenda

Introduction to Smoothing Methods

e Polynomial Regression v
e Basis Expansion v

Splines
e Cubic, Natural, and B-splines v

Regularization Methods

e Shrinkage Estimators: Ridge, LASSO, Elastic Net v
e Smoothing Splines v

Local Weighting
o Delta-Neighbourhood-and -KNN
e Kernel Smoothing v
e Local Smoothing and LOESS v

Multidimensional Smoothing (if time permits)
e Tensor Product Bases v/
e Thin-plate Splines v
e Additive Spline Model v
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