
Workshop: Introduction to Statistical Learning, Part II- Cross-Validation
and Bootstrap for estimating test error

Mohammad Jafari Jozani

February 14, 2021

Contents

1 Test Error 2

2 Different methods for estimating the Test Error 4

2.1 Sample-splitting . 4

2.2 Cross-validation . 7

2.2.1 Leave-One-Out Cross Validation (LOOCV) . 9

2.2.2 K-fold cross-validation . 15

2.3 1-NN classifier . 25

2.4 Logistic Regression . 30

3 Cross-validation with unsupervised screening 31

4 Bootstrap 31

4.1 Bootstrap for Bias correction . 33

4.2 Parametric Bootstrap . 34

4.3 Nonparametric Bootstrap . 35

4.4 Example 1: Gamma distribution . 36

4.5 Example 2 : Asset Management . 37

4.6 Example 3. Using R packages . 40

5 Bootstrap for estimating prediction error 42

5.1 Using bootstrap data for model fitting and original data for prediction 42

5.2 Using bootstrap data for model fitting and left out data for prediction 44

5.3 0.632 estimator . 45

5.4 Adjusted 0.632 estimate . 46

1

1 Test Error

Often, we want an accurate estimate of the test error of our method (e.g., linear regression) for

• Predictive assessment: to get an absolute understanding of the magnitude of errors we should expect
in making future predictions

• Model/method selection: to choose among different models/methods, attempting to minimize test error

As we discussed earlier, an important application of statistics concerns prediction. Prediction and estimations
are close cousins but they are not twins. The training error

1
n

n∑
i=1

(Yi − Ŷi)2

is not a good estimate of the test error of our method and it is in general too optimistic as an estimate of
the test error. The reason is that every model is too optimistic about how well it will actually predict. Model
parameters are often estimated to make Ŷi close to Yi, i = 1, . . . , n, in the first place, hence training error is not
a good estimate of the test error.

Also, importantly, the more complex/adaptive the method, the more optimistic its training error is as an
estimate of test error

Consider a toy example, where the underlying true relationship between X and Y is a quadratic model given by

Y = −3 + 3X sin(2πX)− 1.3X2 cos(X) + ε, with ε ∼ N(0, 2).

Suppose X ∼ U(−2, 5) and we have generated a training data of size n = 15 and an independent test data of
size n = 15 from the underlying model. Here we show these two data sets

set.seed(2020)
n = 15
x = sort(runif(n, -2, 5))
y = -3+ 3*x*sin(2*pi*x)-1.3*x^2*cos(x) + rnorm(n, 0, 2)
x0 = sort(runif(n, -2, 5))
y0 = -3+ 3*x0*sin(2*pi*x0)-1.3*x0^2*cos(x0) + rnorm(n, 0, 2)
par(mfrow=c(1,2))
xlim = range(c(x,x0)); ylim = range(c(y,y0))
plot(x, y, xlim=xlim, ylim=ylim, main="Training data", pch=20)
plot(x0, y0, xlim=xlim, ylim=ylim, main="Test data", pch=20, col="red")

We first fit a 3rd degree polynomial regression model to our training data. It is easy to calculate the training
error for the model given by

Training Error = 1
15

15∑
i=1

(Yi − Ŷi)2 = 15.768.

Also, for the new test data Y0i, i = 1, . . . , 15, we calculate the test error given by

Test Error = 1
15

15∑
i=1

(Y0i − Ŷ0i)2 = 53.586.

As we observe the model performs relatively good on the test data. However, still the training error is underes-
timating the test error.

2

−2 0 1 2 3 4

−
5

0
5

10
15

Training data

x

y

−2 0 1 2 3 4

−
5

0
5

10
15

Test data

x0

y0
Figure 1: Scatter plots of training and test data of the same size generated from a nonlinear model

Training and test errors for a simple linear model
lm.3 = lm(y ~ poly(x, 3))
yhat.3 = predict(lm.3, data.frame(x=x))
train.err.3 = mean((y-yhat.3)^2)
y0hat.3 = predict(lm.3, data.frame(x=x0))
test.err.3 = mean((y0-y0hat.3)^2)

par(mfrow=c(1,2))
plot(x, y, xlim=xlim, ylim=ylim, main="Training data", pch=20)
lines(x, yhat.3, col=2, lwd=2)
text(1, 15, label=paste("Training error:", round(train.err.3,3)))

plot(x0, y0, xlim=xlim, ylim=ylim, main="Test data", pch=20, col="red")
lines(x, yhat.3, col=3, lwd=2)
text(1,15, label=paste("Test error:", round(test.err.3,3)))

Now, we fit a 6th degree polynomial regression to our training data. Here we can easily observe that the more
complex polynomial model fits better to our training data but the performance of the fitted model in our training
data seems to be very optimistic. This can easily be revealed by using it to predict the response values in the
test data. By doing this, we observe that the test error is severely bigger than the training error.

Training and test errors for a 6th order polynomial regression
lm.6 = lm(y ~ poly(x,6))
yhat.6 = predict(lm.6, data.frame(x=x))
train.err.6 = mean((y-yhat.6)^2)
y0hat.6 = predict(lm.6, data.frame(x=x0))
test.err.6 = mean((y0-y0hat.6)^2)

par(mfrow=c(1,2))

3

−2 0 1 2 3 4

−
5

0
5

10
15

Training data

x

y

Training error: 15.768

−2 0 1 2 3 4

−
5

0
5

10
15

Test data

x0

y0

Test error: 53.586

Figure 2: Scatter plots of training and test data with a fitted polynomial of degree 3 fitted on the training data
and depicted on the test data

xx = seq(min(xlim), max(xlim), length=100)

plot(x, y, xlim=xlim, ylim=ylim, main="Training data", pch=20)
lines(xx, predict(lm.6, data.frame(x=xx)), col=2, lwd=2)
text(0, 12, label=paste("Training error:", round(train.err.6,3)))

plot(x0, y0, xlim=xlim, ylim=ylim, main="Test data", pch=20, col="red")
lines(xx, predict(lm.6, data.frame(x=xx)), col=3, lwd=2)
text(0, 12, label=paste("Test error:", round(test.err.6,3)))

In this toy example, we were doing a simulation study and had access to a test data. In practice, one does
not have access to such data and should find a way to estimate the test error. In the absence of a very large
designated test set that can be used to directly estimate the test error, a number of techniques can be used to
estimate this quantity using the available training error. One approach is to adjust the training error using a
penalty term to better estimate the test error. Another approach which is the topic of this chapter estimates the
test error rate by holding out a subset of the training observation from the fitting process, and then applying
the statistical learning method to those held out observations.

2 Different methods for estimating the Test Error

Here we discuss a number of methods that are often used to estimate the test error. The idea behind most of
these methods is based on creating proper hold-out datasets and using the model fitted on the training data (not
hold-out) to predict the response of the hold-out dataset.

2.1 Sample-splitting

Given a training data set, an effective approach that has been widely used in statistics is the sample-splitting
approach. In this approach, one can proceed as follow:

4

−2 0 1 2 3 4

−
5

0
5

10
15

Training data

x

y
Training error: 3.806

−2 0 1 2 3 4

−
5

0
5

10
15

Test data

x0

y0

Test error: 428.207

Figure 3: Scatter plots of training and test data with a fitted polynomial of degree 6 fitted on the training data
and depicted on the test data

• Split the data set into two parts as training data and hold-out data
• Train the model/method to the training dataset.
• Make predictions on hold-out data
• Evaluate observed test error

As an example, consider again our toy example and suppose we have generated a sample of size n = 100 from
the underlying population.

set.seed(2020)
n = 100
x = sort(runif(n, -2, 5))
y = -3+ 3*x*sin(2*pi*x)-1.3*x^2*cos(x) + rnorm(n, 0, 2)
toy.data <- data.frame(x=x, y=y)
n = nrow(toy.data)

Split data in half, randomly
inds = sample(rep(1:2, length=n))

train.toy = toy.data[inds==1,] # Training data
test.toy = toy.data[inds==2,] # Test data

plot(toy.data$x, toy.data$y, pch=c(21,19)[inds], main="Sample-splitting", xlab="x", ylab="y")
legend("topleft", legend=c("Training","Test"), pch=c(21,19))

Here, we train a cubic well as a 6th degree polynomial regression model to our training data and predict the
second half of the data (as hold out) to evaluate the test error.

Train on the first half
lm.3 = lm(y ~ poly(x, 3), data=train.toy)
lm.6 = lm(y ~ poly(x,6), data=train.toy)

5

−2 −1 0 1 2 3 4 5

−
20

−
10

0
10

20

Sample−splitting

x

y

Training
Test

Figure 4: Scatter plots of a sample of size 100 taken from the model and randomly divided into training and test
data sets

Predict on the second half, evaluate test error
pred.3 = predict(lm.3, data.frame(x=test.toy$x))
pred.6 = predict(lm.6, data.frame(x=test.toy$x))

test.err.3 = mean((test.toy$y - pred.3)^2)
test.err.6 = mean((test.toy$y - pred.6)^2)

Plot the results
par(mfrow=c(1,2))
xx = seq(min(toy.data$x), max(toy.data$x), length=100)

plot(toy.data$x, toy.data$y, pch=c(21,19)[inds], xlab="", ylab="",
main="Sample-splitting, Degree=3")

lines(xx, predict(lm.3, data.frame(x=xx)), col=2, lwd=2)
legend("topleft", legend=c("Training","Test"), pch=c(21,19))
text(1, -15, label=paste("Test error:", round(test.err.3,3)))

plot(toy.data$x, toy.data$y, pch=c(21,19)[inds], xlab="", ylab="",
main="Sample-splitting, Degree=6")

lines(xx, predict(lm.6, data.frame(x=xx)), col=3, lwd=2)
legend("topleft", legend=c("Training","Test"), pch=c(21,19))
text(1, -15, label=paste("Test error:", round(test.err.6,3)))

We could use this approach to decide the degree of a polynomial regression that best fits the data by choosing a
degree that gives the smallest test error estimate. To this end, one can proceed as follow:

6

−2 0 1 2 3 4 5

−
20

−
10

0
10

20

Sample−splitting, Degree=3

Training
Test

Test error: 72.855

−2 0 1 2 3 4 5

−
20

−
10

0
10

20

Sample−splitting, Degree=6

Training
Test

Test error: 45.493

Figure 5: Fitted polynomials of degree 3 and 5 on training portion of our data set and using them to predict the
response values associated with the hold-out data

p.max <- 8 #the maximum degree of polynomial regression
test.err <- rep(0, p.max)

for(p in 1:p.max){
lm.p = lm(y ~ poly(x, p), data=train.toy)
pred.p = predict(lm.p, data.frame(x=test.toy$x))
test.err[p] = mean((test.toy$y - pred.p)^2)
}

plot(1:p.max, test.err, type="b", pch=20, col="red",
xlab="Degree of Polynomial",
ylab="Test Error Estimate")

Note that, however, this approach highly depends on how splitting is done. Here we have repeated the data
splitting a few times and have calculated the test-error estimates for different values of p.

The splitting set approach is conceptually simple and is easy to implement and might be effective whenever it is
possible to perfrom. But it has two potential drawbacks:

1. As shown above, the spiting approach for estimating test error can be highly variable, depending on precisely
which observations are included in the training set and which observations are included in the test set.

2. In this approach, only a subset of observations are used to fit the model. Since statistical methods tend
to perform worse when trained on fewer observations, this suggests that the estimate we obtain in this
approach overestimates the true test error for the model fit on the entire data set.

A refinement of splitting sample approach is cross-validation that addresses these two issues.

2.2 Cross-validation

Ideally, if we had enough data, we would set aside a validation set and use it to assess the performance of our
prediction model. But this approach is not often possible and even if possible, it estimates the test error when

7

1 2 3 4 5 6 7 8

40
60

80
10

0
14

0

Degree of Polynomial

Te
st

 E
rr

or
 E

st
im

at
e

Figure 6: Test error pertinent to fitted polynomials of degrees up to 8 when data are splitted are random into
two halves

1 2 3 4 5 6 7 8

0
50

10
0

15
0

20
0

Degree of Polynomial

Te
st

 E
rr

or
 E

st
im

at
e

Figure 7: Test error estimates for fitted polynomials of degrees up to 8 when 5 different sample splitting in halves
are perfromed on our original dataset

8

the model/method is trained on less data (say, roughly half as much). Probably, the simplest and most widely
used method of estimating test error is cross-validation. Consider a model m(x) = E[Y |X = x] which we would
like to estimate using our training data

T = {(Xi, Yi) : i = 1, . . . , n}.

Suppose Ŷi = m̂(Xi) be the estimated function using the training sample.

2.2.1 Leave-One-Out Cross Validation (LOOCV)

The leave-one-out cross validation starts by removing the ith observation from the training sample and uses

T (−i) = T − {(Xi, Yi)}, i = 1, . . . , n,

to obtain the fitted value for data point i given by m̂(−i)(Xi) = m̂
(−i)
i = Ŷ

(−i)
i , where the subscript (−i) indicates

that point i was left out in calculating this fit. The LOOCV score of the model is

LOOCV = 1
n

n∑
i=1

(Yi − Ŷ (−i)
i)2 (1)

Many more old-fashioned regression textbooks look at nLOOCV, and call it PRESS, predictive residual sum of
squares.

The idea of LOOCV is very simple. We want to know if our model can generalize to new data. Leaving out
each point in turn ensures that the set of points on which we try to make predictions is just as representative of
the whole population as the original sample was. LOOCV is an unbiased estimate of the generalization error.
However, its variance is high, as by changing the sample, the LOOCV score will change. One of the reason is that
T (−i)’s are almost the same when calculating LOOCV score. So, the variability of the samples does not exist in
its calculation and LOOCV does not account for that. In the K-fold cross validation as we will see shortly, this
problem is relatively solved, however we need trade-off a little bit of bias to reduce the variability of LOOCV.

Re-estimating the model n times using
T (−1), T (−2), . . . , T (−n),

would be seriously time-consuming, especially when n is large and X is high-dimensional. Fortunately, for linear
smoother of the form

Ŷ = HY,

there is a shortcut formula that requires only fitting the model to the whole data set T once and calculate the
LOOCV score by re-weighting its individual errors. In other words, for linear smoothers, we have

LOOCV = 1
n

n∑
i=1

(
Yi − Ŷi
1−Hii

)2
(2)

Note that using the whole training data set T , we have
Ŷ1
Ŷ2
...
Ŷn

 =

H11 H12 . . . H1n
H21 H22 . . . H2n
...

...
...

...
Hn1 Hn2 . . . Hnn

Y1
Y2
...
Yn

 ,

and
Ŷi =

n∑
j=1

HijYj .

9

Now, let Ŷ (−i)
i be the fitted value using T (−i). It is easy to see that Y(−i) is also the fitted model to

T ∗i = {(Xj , Z
i
j) : j = 1, . . . , n},

with

Zij =
{
Yj j 6= i

Ŷ
(−i)
i j = i.

To see this, note that

∑
j 6=i

(Yj − Ŷ (−i)
j)2 =

n∑
j=1

(Zij − Ŷ
(−i)
j)2.

So, one can write

Ŷ
(−i)
i =

n∑
j=1

HijZ
i
j .

Now, we can write

Ŷi − Ŷ (−i)
i =

n∑
j=1

Hij(Yj − Zj)

= Hii(Yi − Ŷ (−i)
i),

and so
Ŷi = HiiYi + (1−Hii)Ŷ (−i)

i .

Now, it is easy to see that
Yi − Ŷi = (1−Hii)(Yi − Ŷ (−i)

i),

or equivalently

Yi − Ŷ (−i)
i = Yi − Ŷi

1−Hii
.

This results in

LOOCV = 1
n

n∑
i=1

(Yi − Ŷ (−i)
i)2 = 1

n

n∑
i=1

(
Yi − Ŷi
1−Hii

)2
.

In this shortcut formula for LOOCV, the numerator inside the square is the residual of the model fit to the full
data. This gets divided by 1−Hii, which is obtained after we fit the model to the whole data set. In this formula,
the denominator forces the residuals for high-leverage points count more, and those for low-leverage points count
less. If the model is going out of its way to match Yi (high leverage Hii) and still can not fit it, that is worse
than the same sized residual at a point the model does not really care about (low leverage).

Note that, the gap between LOOCV and the MSE can be thought of as a penalty or an estimate of the optimism
of the model.
In many cases, such as the multiple linear regression with p predictors Trace(H) =

∑n
i=1Hii = p + 1. In such

cases, one can estimate Hii’s with their average given by

λ = 1
n

n∑
i=1

Hii = p+ 1
n

.

Using a Taylor series expansion, we get

1
(1−Hii)2 ≈

1
(1− λ)2 ≈ 1 + 2λ,

10

and accordingly

LOOCV = 1
n

n∑
i=1

(
Yi − Ŷi
1−Hii

)2

≈ 1
n

n∑
j=1

(Yj − Ŷj)2(1 + 2λ)

= MSE + 2(p+ 1)
n

MSE

= MSE + 2(p+ 1)
n

σ̂2.

This is inline with the expression we obtained in the Chapter pertinent to the Degree of Freedom, i.e.,

̂Test Error = MSE + Optimisim of the Model.

Remark 1. The idea of LOOCV can also be applied for any model that we might use for probabilistic prediction.
In such situations, instead of calculating the mean squared error, one can measure the negative log-probability
density the model assigns to the actual left-out data point. When the underlying model is normally distributed,
this reduces to using MSE and results will be similar to what we explained earlier.

It is known that as n → ∞ the expected out of sample MSE of the model picked by LOOCV is close to that
of the best model considered. This is a very general result that is valid under very mild conditions and does
not need normality of the noise term, etc. On the other hand, it is also shown that as n → ∞, if the true
model is among those being compared, LOOCV will tend to pick a strictly larger model than the truth. In other
words, LOOCV is not consistent for model selection, as it tends to prefer more complex models even if the true
model is among the pool of models to be studies. This is partly due to the fact that LOOCV gives unbiased
estimates of the generalization error, but it has nothing to do with the variance of the estimates. Models with
more parameters have higher variance, and the penalty applied by LOOCV is not strong enough to overcome
the chance of capitalizing on that variance. Note that, cross-validation does not estimate the conditional error,
with the training set T held fixed. Instead, they provide good estimates of the expected prediction error.

Remark 2. As in LOOCV the training datasets T (−1, T (−2), . . ., and T (−n) are almost identical, then the
corresponding fitted models are highly (positively) correlated, hence making the LOOCV score to have a high
variance. So, the test error estimate obtained via LOOCV has a high variance.

Let us look at our toy example and see how LOOCV can be used to perform model selection by estimating the
test error. To this end, we fit polynomial regression models up to 8th degree to our data set generated from

Y = −3 + 3X sin(2πX)− 1.3X2 cos(X) + ε, with ε ∼ N(0, 2),

and where X ∼ U(−2, 5). We generate a sample of size n = 80 from the population.

set.seed(2020)
n <- 100
p.max <- 8
x <- sort(runif(n, -2, 5))
y = -3+ 3*x*sin(2*pi*x)-1.3*x^2*cos(x) + rnorm(n, 0, 2)
train <- data.frame(x=x, y=y)

LOOCV <- rep(0, p.max)

for(p in 1:p.max){

11

err<- 0
for(i in 1:n){
fitte.model <- lm(y~poly(x, p), data = train[-i,])
pred.i <- predict(fitte.model, data.frame(x=train[i, 1]))
err <- err + (pred.i - train[i, 2])^2
}

LOOCV[p] <- err/n
}

plot(1:p, LOOCV, type="b", pch=20, col="red", xlab="Degree of Polynomial")

1 2 3 4 5 6 7 8

40
50

60
70

80

Degree of Polynomial

LO
O

C
V

Figure 8: Test error estimates for fitted polynomials of degrees up to 8 using LOOCV

It seems that a polynomial regression with degree p = 5 is selected here as our best model using LOOCV with
an estimate of test error given by 35.8257909.

In LOOCV we only observe the mean test error by averaging over n numbers corresponding to prediction error
for n data points that are held out one by one. It is interesting to see the variability of the components of the
LOOCV test error estimates:

set.seed(2020)
n <- 100
p.max <- 8

x <- sort(runif(n, -2, 5))
y = -3+ 3*x*sin(2*pi*x)-1.3*x^2*cos(x) + rnorm(n, 0, 2)
toy.data <- data.frame(x=x, y=y)

LOOCV <- matrix(0, nrow=p.max,ncol=n)

for(p in 1:p.max){
for (k in 1:n) {

train.data = toy.data[-k,] # Training data
test.data = toy.data[k,] # Test data

12

Train our models
lm.p.minus.k = lm(y ~ poly(x,p), data=train.data)

Record predictions
pred.mat.k = predict(lm.p.minus.k, data.frame(x=test.data$x))

#Calculate pred Error
LOOCV[p, k] <- round(mean((test.data$y - pred.mat.k)^2),3)

}
}

y.max <- max(LOOCV)

plot(1:p.max, LOOCV[,1], type="b", pch=20, col=1 , ylim=c(0, y.max),
xlab="Degree of Polynomial",
ylab="Test error estimates for each hold-out data")

for(k in 2:n){
points(1:p.max, LOOCV[, k], col=k, type="b", pch=20)

}

1 2 3 4 5 6 7 8

0
10

0
30

0
50

0

Degree of Polynomial

Te
st

 e
rr

or
 e

st
im

at
es

 f
or

 e
ac

h
ho

ld
−

ou
t d

at
a

Figure 9: Variability of LOOCV test error estimate over training data when observationa left out one each at
the time

Now, one might wonder, what happens to LOOCV error curve if we take different samples of size n = 100 from
the underlying population. How does LOOCV behave and what is the distribution of the best selected model? To
this end, we generate B = 10 different samples of size n = 80 and perform LOOCV to investigate its variability
over repeated samples.

library("boot")
set.seed(2020)
n <- 100
p.max <- 8
B <- 10

13

LOOCV <- matrix(0, nrow=p.max,ncol=B)

for (b in 1:B){
x <- sort(runif(n, -2, 5))
y = -3+ 3*x*sin(2*pi*x)-1.3*x^2*cos(x) + rnorm(n, 0, 2)
train <- data.frame(x=x, y=y)

for(p in 1:p.max){
fitte.model <- glm(y~poly(x, p), data = train)

LOOCV[p, b] <- cv.glm(train, fitte.model, K=n)$delta[1]
}

}

y.max <- max(LOOCV)

plot(1:p, LOOCV[,1], type="b", pch=20, col=1 , ylim=c(0, y.max),
xlab="Degree of Polynomial",
ylab="LOOCV over repeated samples")

for(b in 2:B){
points(1:p, LOOCV[, b], col=b, type="b", pch=20)

}

1 2 3 4 5 6 7 8

0
20

40
60

80

Degree of Polynomial

LO
O

C
V

 o
ve

r
re

pe
at

ed
 s

am
pl

es

Figure 10: LOOCV over repeated samples from the same population for estimating the test error of polynomial
regression models

The distribution of the best model over repeated samples is given by

table(apply(LOOCV, 2, which.min))/B

##
5 6 8
0.8 0.1 0.1

Also, we can get the variance of LOOCV test error for fitted polynomial regression models as a function of p
over our repeated sampling:

14

LOOCV.var <- apply(LOOCV, 1, var)
par(mfrow=c(1, 2))
plot(1:p.max, LOOCV.var, type="b",

xlab="Degree of Polynomial",
ylab="Variance of Test Error Estimate")

boxplot(t(LOOCV),
main="Test error distribution",
xlab="Degree of Polynomial",
col="orange",
norder="brown"
)

1 2 3 4 5 6 7 8

50
10

0
15

0
20

0
25

0
30

0

Degree of Polynomial

V
ar

ia
nc

e
of

 T
es

t E
rr

or
 E

st
im

at
e

1 2 3 4 5 6 7 8

20
40

60
80

Test error distribution

Degree of Polynomial

Figure 11: Variance of the LOOCV test error estimates as well as the box plot of error estimates obver each fold
for polynomial regressions of degree up to 8

2.2.2 K-fold cross-validation

As we mentioned earlier, a drawback of LOOCV is that since the model has to be fit n times, this can be very
time consuming when n is large, and/or each individual model is slow to fit. Also, the shortcut formula is not
always applicable and it is only valid for linear smoothers. An alternative to LOOCV is K-fold cross-validation.
This approach involves randomly dividing the set of observations into K groups (folds) of roughly equal size
observations. Then, we proceed as follow:

• Use all but one fold to train your model/method
• Use the left out folds to make predictions
• Rotate around the roles of folds, K rounds total
• Compute squared error of all predictions, in the end

A common choice is k = 5 or k = 10 (note that k = n, reduces to LOOCV).

15

Let κ : {1, 2, . . . , n} → {1, . . . ,K} be an indexing function that indicates the partition (fold) which observation i
is allocated by the randomiation in the K-fold CV. Let m̂[−k](X) be the fitted function computed with the kth
part of the data removed. Then, the K-fold CV estimate of test error is

CVK(m̂) = 1
n

n∑
i=1

L(YI , m̂[−κ(i)](Xi)).

This indeed provides estimates of the average test error ErrT and not the conditional one. With K = n,
the cross-validation estimator is approximately unbiased for the true (expected) test error, but can have high
variance because the n training sets are similar to each other. On the other hand for K-fold CV, we will have
only K << n training data sets T ∗1 , . . . , T ∗K , where

T ∗i = T − Foldi, i = 1, 2, . . . ,K.

Note that, as each T ∗i could be significantly smaller than T (−i), then T ∗i ’s are less correlated, hence K-fold CV
scores are less variable. Also, this approach is computationally less intensive than LOOCV.

Let us consider our toy example again, where we fit polynomial regression models up to 8th degree to our data
set generated from

Y = −3 + 3X sin(2πX)− 1.3X2 cos(X) + ε, with ε ∼ N(0, 2),

and where X ∼ U(−2, 5). We generate a sample of size n = 100 from the population.

We use a 5-fold CV to estimate the test error associated with polynomial regression of degrees 3 and 6. To this
end, we first create our folds:

Split data in 5 parts, randomly
set.seed(2020)
K = 5
inds = sample(rep(1:K, length=n))
table(inds)

inds
1 2 3 4 5
20 20 20 20 20

To perform 5-fold CV, we calculate predicted values when models are trained to data by removing each fold and
treating it as a hold-out data:

pred.mat = matrix(0, n, 2) # Empty matrix to store predictions
for (k in 1:K) {

#cat(paste("Fold",k,"... "))

train.data = toy.data[inds!=k,] # Training data
test.data = toy.data[inds==k,] # Test data

Train our models
lm.3.minus.k = lm(y ~ poly(x,3), data=train.data)
lm.6.minus.k = lm(y ~ poly(x,6), data=train.data)

Record predictions
pred.mat[inds==k,1] = predict(lm.3.minus.k, data.frame(x=test.data$x))
pred.mat[inds==k,2] = predict(lm.6.minus.k, data.frame(x=test.data$x))

}

16

Now, we need to calculate the prediction errors over folds that are held out and take their average to obtain the
corresponding test error estimates:

Compute cross-validation error, one for each model
cv.errs = colMeans((pred.mat - toy.data$y)^2)

Plot the results
par(mfrow=c(1,2))
xx = seq(min(toy.data$x), max(toy.data$x), length=100)

plot(toy.data$x, toy.data$y, xlab="y", ylab="y", pch=20, col=inds+1, main="Degree 3 Polynomial")
lines(xx, predict(lm.3, data.frame(x=xx)), # Note: model trained on FULL data!

lwd=2, lty=2)
legend("topleft", legend=paste("Fold",1:k), pch=20, col=2:(k+1))
text(1, -15, label=paste("CV error:", round(cv.errs[1],3)))

plot(toy.data$x, toy.data$y, xlab="x", ylab="y", pch=20, col=inds+1, main="Degree 6 Polynomial")
lines(xx, predict(lm.6, data.frame(x=xx)), # Note: model trained on FULL data!

lwd=2, lty=2)
legend("topleft", legend=paste("Fold",1:k), pch=20, col=2:(k+1))
text(1, -15, label=paste("CV error:", round(cv.errs[2],3)))

−2 0 1 2 3 4 5

−
20

−
10

0
10

20

Degree 3 Polynomial

y

y

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

CV error: 62.461

−2 0 1 2 3 4 5

−
20

−
10

0
10

20
Degree 6 Polynomial

x

y

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

CV error: 33.506

Figure 12: Observations in each fold of a 5-fold CV and corresponding test error estimates for polynomilas of
degrees 3 and 6

We can also visualize the different models that we fitted to each T ∗i = T − Foldi, for i = 1, 2, . . . , 5.

1. Fitted models to T ∗1 by holding out the first fold as test data:

17

−2 0 1 2 3 4 5

−
20

−
10

0
10

20

Degree 3 polynomial−Fold 1

Fold 1
Other folds

Fold 1 error: 85.682

−2 0 1 2 3 4 5

−
20

−
10

0
10

20

Degree 6 polynomial−Fold 1

Fold 1
Other folds

Fold 1 error: 38.461

2. Fitted models to T ∗2 by holding out the second fold as test data:

−2 0 1 2 3 4 5

−
20

−
10

0
10

20

Degree 3 polynomial−Fold 2

Fold 2
Other folds

Fold 2 error: 71.068

−2 0 1 2 3 4 5

−
20

−
10

0
10

20
Degree 6 polynomial−Fold 2

Fold 2
Other folds

Fold 2 error: 27.634

3. Fitted models to T ∗3 by holding out the third fold as test data:

18

−2 0 1 2 3 4 5

−
20

−
10

0
10

20

Degree 3 polynomial−Fold 3

Fold 3
Other folds

Fold 3 error: 55.385

−2 0 1 2 3 4 5

−
20

−
10

0
10

20

Degree 6 polynomial−Fold 3

Fold 3
Other folds

Fold 3 error: 18.014

4. Fitted models to T ∗4 by holding out the 4th fold as test data:

−2 0 1 2 3 4 5

−
20

−
10

0
10

20

Degree 3 polynomial−Fold 4

Fold 4
Other folds

Fold 4 error: 83.327

−2 0 1 2 3 4 5

−
20

−
10

0
10

20
Degree 6 polynomial−Fold 4

Fold 4
Other folds

Fold 4 error: 52.493

5. Fitted models to T ∗5 by holding out the last fold as test data:

19

−2 0 1 2 3 4 5

−
20

−
10

0
10

20

Degree 3 polynomial−Fold 5

Fold 5
Other folds

Fold 5 error: 59.401

−2 0 1 2 3 4 5

−
20

−
10

0
10

20

Degree 6 polynomial−Fold 5

Fold 5
Other folds

Fold 5 error: 30.929

Now, to see how the test error estimates behave using K-fold CV, we look at our toy example again and fit
polynomials of degrees up to 8 on a data set of size 100. Note that, here one can easily obtain the variance of
the test-error as the byproduct of the K-fold CV as we have K estimates of the test error that we can use and
these estimates are not that variables compared to what one can obtain in LOOCV which is n of them but very
variable.

set.seed(2020)
library("boot")
n <- 100
p.max <- 8
K <- 5

x <- sort(runif(n, -2, 5))
y = -3+ 3*x*sin(2*pi*x)-1.3*x^2*cos(x) + rnorm(n, 0, 2)
toy.data <- data.frame(x=x, y=y)

KfoldCV <- matrix(0, nrow=p.max,ncol=K)

for(p in 1:p.max){
for (k in 1:K) {

cat(paste("Fold",k,"... "))

train.data = toy.data[inds!=k,] # Training data
test.data = toy.data[inds==k,] # Test data

Train our models
lm.p.minus.k = lm(y ~ poly(x,p), data=train.data)

Record predictions
pred.mat[inds==k,1] = predict(lm.p.minus.k, data.frame(x=test.data$x))

#Calculate pred Error
KfoldCV[p, k] <- round(mean((test.data$y - pred.mat[inds==k,1])^2),3)

}
}

20

KfoldCV.average <- apply(KfoldCV, 1, mean)

y.max <- max(KfoldCV)

par(mfrow=c(1, 2))
plot(1:p.max, KfoldCV.average, type="b", pch=20, col="darkgreen",

ylab="Kfold CV test error estimates", xlab=" Degree of Polynomial", ylim=c(0, y.max))
plot(1:p.max, KfoldCV[,1], type="b", pch=20, col=1 , ylim=c(0, y.max),

xlab="Degree of Polynomial",
ylab="Test error estimates over folds")

for(k in 2:K){
points(1:p.max, KfoldCV[, k], col=b, type="b", pch=20)

}

1 2 3 4 5 6 7 8

0
20

40
60

80
12

0

 Degree of Polynomial

K
fo

ld
 C

V
 te

st
 e

rr
or

 e
st

im
at

es

1 2 3 4 5 6 7 8

0
20

40
60

80
12

0

Degree of Polynomial

Te
st

 e
rr

or
 e

st
im

at
es

 o
ve

r
fo

ld
s

Figure 13: 5-fold CV test error estimates as well as test error estimates over different folds for polynomila
regressions of degrees up to 8

We can also use the resampling approach (not practical in real situations) to get an estimate of the variance of
the K-fold CV test error estimates. This can be done as follow:

set.seed(2020)
n <- 100
p.max <- 8
B <- 10
K <- 5

KfoldCV <- matrix(0, nrow=p.max,ncol=B)

for (b in 1:B){
x <- sort(runif(n, -2, 5))
y = -3+ 3*x*sin(2*pi*x)-1.3*x^2*cos(x) + rnorm(n, 0, 2)
train <- data.frame(x=x, y=y)

for(p in 1:p.max){

21

fitte.model <- glm(y~poly(x, p), data = train)
KfoldCV[p, b] <- cv.glm(train, fitte.model, K=K)$delta[1]

}
}

y.max <- max(KfoldCV)

plot(1:p.max, KfoldCV[,1], type="b", pch=20, col=1 , ylim=c(0, y.max),
xlab="Degree of Polynomial",
ylab="K-fold test error curves over repeated samples")

for(b in 2:B){
points(1:p, KfoldCV[, b], col=b, type="b", pch=20)

}

1 2 3 4 5 6 7 8

0
20

40
60

80

Degree of Polynomial

K
−

fo
ld

 te
st

 e
rr

or
 c

ur
ve

s
ov

er
 r

ep
ea

te
d

sa
m

pl
es

Figure 14: K-fold CV test error estimates over repeated samples from the population

As we see here, the K-fold CV error curves are less variable than LOOCV curves.

KfoldCV.var <- apply(KfoldCV, 1, var)
par(mfrow=c(1, 2))
y.max <- max(KfoldCV.var, LOOCV.var)
plot(1:p.max,KfoldCV.var, type="b", pch=20, ylim=c(0, y.max),

xlab="Degree of Polynomial",
ylab="Variance of Test Error Estimate", col="green")

points(1:p.max, LOOCV.var, type="b", pch=10, col="red")
legend("topright", legend=c("K-fold CV", "LOOCV"), col=c("green", "red"), pch=c(20, 10))

boxplot(t(KfoldCV.var),
main="Test error distribution",
xlab="Degree of Polynomial",
col="orange",

22

norder="brown"
)

1 2 3 4 5 6 7 8

0
50

10
0

20
0

30
0

Degree of Polynomial

V
ar

ia
nc

e
of

 T
es

t E
rr

or
 E

st
im

at
e K−fold CV

LOOCV

1 2 3 4 5 6 7 8

50
10

0
15

0
20

0
25

0
30

0

Test error distribution

Degree of Polynomial

Figure 15: The variance of 5-fold CV test error estimates as well as the box plot og test error estimates over
different folds for polynomila regressions of degrees up to 8

#The right and wrong ways of doing cross-validation Consider a classification problem with a large number of
predictors, such as those in genomic applications. A typical strategy for analysis might be as follows:

1. Screen the predictors to find a subset of good predictors that show strong correlation with the class labels.
2. Using just this subset of predictors, build a multivariate classifier.
3. Use cross-validation to choose among classifiers and accordingly estimate the prediction error of the final

model.

To investigate if such a method is correct or not, we will work with an example where under the null hypothesis
there are n = 50 samples in two equal-sized classes, and p = 5000 standard normal predictors that are independent
of class labels (response variable). The true test error rate of any classifier for this setting is 50%. We carry
out the above recipe. We first generate the data as follows. We also present the histogram of the correlation
coefficients of Xi’s with Y in our data set and as we can see the mean of the correlations is zero as one would
also expect to see:

set.seed(2020)
n = 50 # Sample size
p = 5000 # Dimension of feature space
best.size = 100 # Dimension after screening
B = 100 # Number of simulation
K = 5 # K in Knn approach
#Generate population
get.data <- function(n, p){
X = as.data.frame(matrix(rnorm(n*p),n, p))
Y = sample(rep(0:1, n/2), n, replace=FALSE)
X$Y = Y

23

return(X)
}
Data <- get.data(n, p)
cor.data <- cor(Data[, -ncol(Data)], Data$Y)
hist(cor.data , col="pink", xlab="Correlation of X’s with Y", ylab="Frequency", main="")

Correlation of X's with Y

F
re

qu
en

cy

−0.4 −0.2 0.0 0.2 0.4 0.6

0
20

0
60

0
10

00

Figure 16: Histogram of correlation coefficients of features with class labels

mean(cor.data)

[1] 1.421884e-05

We use the above mentioned algorithm and first perform a screening and select 100 predictors having the highest
correlations with the class labels. This can be done as shown below, where we also provide the histogram of the
correlation coefficients of selected features with class labels.

get.high.cor <- function(Data,p, best.size) {
correlations = as.vector(cor(Data[,-ncol(Data)],Data[, ncol(Data)]))
sorted = sort((correlations),index.return=T,decreasing=T)
best.index = sorted$ix[1:best.size]
return(list(high.cor= correlations[best.index], index.best=best.index))

}

ind.best <- get.high.cor(Data,p, best.size)$index.best

hist(get.high.cor(Data,p, best.size)$high.cor,
col="pink", main="Wrong way",
xlab="", ylab="Frequency")

Now, we are ready to define functions to perform cross-validation the way that was described above.

24

Wrong way

F
re

qu
en

cy

0.25 0.30 0.35 0.40 0.45 0.50 0.55
0

10
20

30
40

50
60

Figure 17: Histogram of the largest 100 correlation coefficients of features with class labels

2.3 1-NN classifier

For the data that we have generated, we perform a cross-validation and provide the estimate test error when a
1-nearest neighbor classifier, based on just 100 selected predictors are performed in each fold. We observe that
1-nearest neighbor classifier performs extremely well on the test data generate samples out after the variables
have been selected does not correctly mimic the application of the classifier to a completely independent test set,
since these predictors have already see the left out samples.

set.seed(2020)
WrongCV <- function(Data,p, best.size, K) {
n <-nrow(Data)
best = get.high.cor(Data,p, best.size)$index.best
D.best <- Data[, c(best, ncol(Data))]

inds = sample(rep(1:K, length=n))
errors = c()
corrr <- matrix(NA, best.size, K)

for (i in 1:K) {
test = D.best[inds==i,]
train = D.best[inds != i,]
knn.train <- class::knn(train = train[, -ncol(train)],

test = train[, -ncol(train)],
cl = train$Y,
k = 1, prob = FALSE)

knn.test <- class:: knn(train =train[, -ncol(train)], # train x
test = test[, -ncol(train)], # test x
cl = train$Y, #train y
k = 1, prob = FALSE)

test.error.knn <- mean(test$Y != knn.test)
training error rate
train.error.knn <- mean(train$Y != knn.train)
error rate
errors = c(errors, test.error.knn)

corrr[, i] <- cor(test[,-ncol(test)], test[, ncol(test)])
corrr[, i] <- sapply(test[,-ncol(test)], function(x){cor(x, test[,ncol(test)])})

}

25

return(list(test.error = mean(errors), cor.with.y = as.vector(corrr)))
}

WrongCV(Data, p, best.size, 5)$test.error

[1] 0

mean(WrongCV(Data, p, best.size, 5)$cor.with.y)

[1] 0.3054754

To get more insight, after we select the best 100 predictors having highest correlations with the class labels, we
select a random sample of size 10 from the population and calculate the correlation of the class labels with the
selected feature for this sample.

index.10 <- sample(1:nrow(Data), 10, replace=FALSE)
Data.new <- Data[index.10, c(get.high.cor(Data, p, best.size)$index.best, ncol(Data))]

cor.in.10 <- cor(Data.new[, -ncol(Data.new)], Data.new[, ncol(Data.new)])
hist(cor.in.10, col="pink", xlab="Correlations of Selected Predictors with Outcome",

main="")

Correlations of Selected Predictors with Outcome

F
re

qu
en

cy

−0.5 0.0 0.5 1.0

0
5

10
15

20
25

30

Figure 18: Histogram of the correlation coefficients of class labels and selected features for 10 observations
randomly selected from the population

mean(cor.in.10)

[1] 0.3435443

The average correlations is about 0.3435443, rather than 0, as one might expect.

Now, let us repeat this process 50 times. We provide the histogram of the correlation coefficients of class labels
and selected features for test data in each fold over the simulation as well as the mean and boxplot of test errors.

26

B = 50
K = 5
wErrors = c()
wCorr = c()
for (i in 1:B) {

X <- get.data(n, p)
wCorr = c(wCorr, WrongCV(X,p, best.size, K)$cor.with.y)
wErrors = c(wErrors,WrongCV(X,p, best.size, K)$test.error)

}

hist(wCorr, col="pink", main="", xlab="Correlation Coefficients")

Correlation Coefficients

F
re

qu
en

cy

−0.5 0.0 0.5 1.0

0
50

0
15

00
25

00
35

00

Figure 19: Histogram of the correlation coefficients of class labels and selected features for test data in each fold
over the simulation

mean(wErrors)

[1] 0.0336

boxplot(wErrors, col="red")

0.
00

0.
04

0.
08

0.
12

Figure 20: Histogram of the correlation coefficients of class labels and selected features for test data in each fold
over the simulation

Here is the correct way to carry out cross-validation in this example:

27

1. Divide the samples into K cross-validation folds(group) at random.
2. For each fold i = 1, 2, . . . ,K

• Find a subset of good predictors that show fairly strong correlation with the class labels, using all of
the samples except those in fold i.

• Using just this subset of predictors, build a multivariate classier, using all of the samples except those
in fold i.

• Use the classifier to predict the class labels for the samples in fold i.

The error estimates are then accumulated over all K folds to produce cross-validation estimate of prediction
error.

RightCV <- function(Data,n,p, K) {
n <-nrow(Data)
inds = sample(rep(1:K, length=n))
errors = c()
corrr <- matrix(NA, best.size, K)

for (i in 1:K) {
best = get.high.cor(Data[inds!=i,],p, best.size)$index.best
D.best <- Data[, c(best, ncol(Data))]
test = D.best[inds==i,]
train = D.best[inds!= i,]
knn.train <- class::knn(train = train[, -ncol(train)],

test = train[, -ncol(train)],
cl = train$Y,
k = 5, prob = FALSE)

knn.test <- class:: knn(train =train[, -ncol(train)], # train x
test = test[, -ncol(train)], # test x
cl = train$Y, #train y
k = 5, prob = FALSE)

test.error.knn <- mean(test$Y != knn.test)
training error rate
train.error.knn <- mean(train$Y != knn.train)

errors = c(errors, test.error.knn)
corrr[, i] <- cor(D.best[inds==i,-ncol(D.best)], D.best[inds==i, ncol(D.best)])

}

return(list(test.error = mean(errors), cor.with.y = as.vector(corrr)))
}

RightCV(Data, p, best.size, 5)$test.error

[1] 0.44

mean(RightCV(Data, p, best.size, 5)$cor.with.y)

[1] -0.00179424

28

hist(RightCV(Data, p, best.size, 5)$cor.with.y, col="green",
main="Right Way", xlab="Correlation of X’s with Y in test")

Right Way

Correlation of X's with Y in test

F
re

qu
en

cy

−0.5 0.0 0.5 1.0

0
20

40
60

80

Figure 21: Histogram of the correlation coefficients of class labels and selected features for test data in each fold
over the simulation using the right way of cross-validation

By repeating this process 50 times, we obtain the average test error as well as the histogram of the correlation
coefficients between selected features in each fold with the class labels in left out samples.

cErrors = c()
cCorr = c()
for (i in 1:B) {

X <- get.data(n, p)
cCorr = c(cCorr, RightCV(X,p, best.size, K)$cor.with.y)
cErrors = c(cErrors,RightCV(X,p, best.size, K)$test.error)

}

hist(cCorr, col="green", main="", xlab="Correlation Coefficients for Right Way of CV")

Correlation Coefficients for Right Way of CV

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
50

0
15

00
25

00

Figure 22: Histogram of the correlation coefficients of class labels and selected features for test data in each fold
over 50 simulation

29

mean(cErrors)

[1] 0.5432

By comparing the box-plot of the test errors of the right and wrong methods one can observe that the wrong
cross-validation results in severely wrong and misleading results.

boxplot(cbind(cErrors, wErrors), col=c("green", "pink"), label=c("Correct Way", "Wromg Way"))

cErrors wErrors

0.
0

0.
2

0.
4

0.
6

Figure 23: Boxplots oftest error estimates using the right and wrong cross-validation methods

2.4 Logistic Regression

Here we repeat the same process but this time we use logistic regression to perform classification. The details of
the code are left to students to figure out by themselve by modifying previous codes accordingly.

cErrors wErrors

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 24: Test error estimates of logist regression models for classifications using the right and wrong way of
cross-validations

The box-plots of the test errors associated with the right and wrong ways are given in Figure 24:

Remark 3. In general, with a multistage modeling procedures, cross-validation must be applied to the entire
sequence of modeling process steps. In particular, samples must be left out before any selection or filtering steps
are applied. The only exception is when feature selection is done in an unsupervised way. For example, one
might select 1100 predictors with highest variance across all 50 samples, before starting cross validation. Since
the filtering doe snot involve the class labels, it does not give the predictors an unfair advantage.

30

3 Cross-validation with unsupervised screening

Here we perform our previous study but this time instead of keeping those variables with the highest correlation
with class labels, we retain 100 predictors that have the highest variance. We then fit 1-nearest neighbor classifiers
using the right and wring way and run our simulation 50 times. The box-plot of errors with the two methods
described above are then presented. As we observe, as variable selection is done independent of class labels in
an unsupervised method, these two approaches give you similar test errors.

cErrors wErrors

0.
4

0.
5

0.
6

0.
7

Figure 25: Boxplots of test error estimates using th eright and wrong way of classification methods when screening
is done in an unsupervised way

4 Bootstrap

The bootstrap is a general tool for assessing statistical accuracy. In statistics, bootstrapping is any test or
metric that relies on random sampling with replacement. Bootstrapping allows assigning measures of accuracy
(defined in terms of bias, variance, confidence intervals, prediction error or some other such measure) to sample
estimates. Although the method is nonparametric in nature, it can also be used for inference about parameters in
parametric models. Bootstrapping is the practice of estimating properties of an estimator (such as its variance)
by measuring those properties when sampling from an approximating distribution. One standard choice for an
approximating distribution is the empirical distribution function of the observed data. In the case where a set
of observations can be assumed to be from an independent and identically distributed population, this can be
implemented by constructing a number of re-samples with replacement, of the observed dataset (and of equal
size to the observed dataset).

##Introduction The bootstrap is a general data based computational methodology for determining the variance
and the distribution of estimators of an unknown parameter θ. In general, parameters of a population are
statistical functionals defined on a class of distributions F , i.e., θ = T (F) for F ∈ F , where T : F → Rd. This is
a very general definition of a parameter and allows one to cover bootstrap for both parametric and nonparametric
studies. Here are some examples:

1. Suppose X = (X1, . . . , Xn) is an i.i.d. sample from a distribution with a known cdf F (·; θ) where θ is
the vector of unknown parameters of interest with θ ∈ Θ ⊆ Rd, d ≥ 1. This is the usual framework in
parametric setting where the functional form of the underlying distribution is known but it is indexed by
a set of unknown parameters. Knowing the values of θ will characterize the underlying population. Let
γ̂n = γ̂n(X) be an estimator of γ(θ), e.g., the maximum likelihood or the method of moments estimator. We
would like to estimate the variance of γ̂n and construct a 100(1−α)% confidence interval for γ(θ). Note that
in this case, we know the distribution of Xi’s. However, there are many cases where finding the distribution
and/or the variance of γn is very hard. In such cases, one needs to rely on resampling techniques, such as
the bootstrap, to find an approximate sampling distribution for γn and make approximate inference about
γ(θ).

31

2. Suppose X = (X1, . . . , Xn) is a random sample from an unknown distribution F and let θ = T (F) denote
the mean of F . Here θ = E(Xi) =

∫
xdF (x). Let θ̂n = T (Fn) = 1

n

∑n
i=1Xi be the plug-in estimator of θ

where Fn is the edf of X. Again, we would like to estimate the variance of θ̂n and construct a 100(1−α)%
confidence interval for θ. This is a nonparametric example where we do not know the distribution of Xi’s.
As another example, we might be interested in making inference about the population median θ = F−1(1

2),
where P (Xi ≤ θ) = 1

2 .

In the first example θ denotes the parameter of a parametric model, while in the second example, we are in
a nonparametric situation. In nonparametric cases, we think of a parameter as a function of the underlying
distribution F and we simply write θ = T (F). One way to estimate T (F) is to use the plug-in method by
replacing F with the edf Fn and obtaining θ̂n = T (Fn). The bootstrap can help us to make inference about the
distribution of θ̂n − θ. In order to do this, suppose an i.i.d. random sample X1, . . . , Xn is available from F . A
sample of size n from Fn is called a bootstrap sample, denoted by

X∗1 , . . . , X
∗
n ∼ Fn.

Bootstrap samples play an important role in what follows. We should note that drawing i.i.d. samples X∗1 , . . . , X∗n
from Fn is equivalent to drawing n observations, with replacement, from the original sample X = (X1, . . . , Xn).
This is why the bootstrap is also called resampling the data in the literature.

After we obtain a bootstrap sample X∗1 , . . . , X∗n from Fn, we construct an estimate θ̂∗n = T (F ∗n) for θ̂n where F ∗n
is the edf of X∗ = (X∗1 , . . . , X∗n).

Figure 26: Bootstrap for approximating the sampling distribution of an estimator

The bootstrap idea is simply the following distributional approximation

(θ̂n − θ) ≈ (θ̂∗n − θ̂n),

which means the the distributions of two random variables (θ̂n − θ) and (θ̂∗n − θ̂n) are approximately the same.
This implies that, for example,

BiasF (θ̂n) = EF (θ̂n − θ) ≈ EFn(θ̂∗n − θ̂n),

and
VarF (θ̂n) = VarF (θ̂n − θ) ≈ VarFn(θ̂∗n − θ̂n).

Since Fn is known, we can often find theoretical properties of the distribution of θ̂∗n− θ̂n reasonably easy, or using
Monte Carlo methods. So, bootstrapping is an approach to statistical inference based on building a sampling
distribution for a statistic by resampling from the data at hand. The term bootstrapping due to Efron (1979),
is an allusion to the expression “pulling oneself up by one’s bootstraps", in this case using the sample data as a
population from which repeated samples are drawn.

32

4.1 Bootstrap for Bias correction

We can use bootstrapping to correct for a bias estimator. Since the sampling distribution of θ̂∗n is close to that
of θ̂n, and θ̂n itself is close to θ, as we showed earlier

EF (θ̂n)− θ ≈ EFn(θ̂∗n)− θ̂n. (3)

The left hand side is the bias that we are looking for and the right-hand side the one that we can calculate using
bootstrap. After estimating the bias of θ̂n, one can correct for the bias of the estimator. To this end, since

EF (θ̂n) = θ + biasF (θ̂n),

and
̂biasF (θ̂n) ≈ EFn(θ̂∗n)− θ̂n,

we have
EF

(
θ̂n − ̂biasF (θ̂n)

)
≈ θ.

This results in a bootstrap-bias corrected estimator

2θ̂n − EFn(θ̂∗n).

If simulations are used to estimate EFn(θ̂∗n), then in the formula for the bootstrap estimate of the bias and the bias
corrected estimator, EFn(θ̂∗n) would be replaced by 1

B

∑B
b=1 θ̂

∗
n,b (see next Section). Note that (3) remains valid

as long as the sampling distribution of θ̂n − θ is close to that of θ̂∗n − θ̂n. This is of course a weaker requirement
than asking for θ̂n and θ̂∗n themselves have similar distributions, or asking for θ̂n be close to θ. A sufficient but
not necessary condition for (3) to hold is that θ̂n − θ be a pivot, or approximately pivotal.

##Bootstrap algorithm for estimating the variance

Here we give a general algorithm for estimating the variance of the estimator θ̂n using the bootstrap method.
To this end, suppose θ̂n = T (Fn) denotes an estimator of θ. To find the bootstrap variance estimator of θ̂n we
proceed as follow:

1. Using X = (X1, . . . , Xn) we obtain the edf Fn(t) = 1
n

∑n
i=1 I(Xi ≤ t), t ∈ R.

2. For b = 1, 2, . . . , B, with B being large,

2.1 Draw a simple random sample with replacement X∗b = (X∗1,b, . . . , X∗n,b) from Fn (or equivalently from
X).

2.2 Calculate the bootstrap edf F ∗n,b(t) = 1
n

∑n
i=1 I(X∗i,b ≤ t).

2.2 Calculate the bootstrap replicates of θ̂n given by θ̂∗n,b = T (F ∗n,b).

3. After calculating θ̂∗n,1, . . . , θ̂∗n,B compute

V̂arB(θ̂n) = 1
B − 1

B∑
i=1

(θ̂∗n,i − θ∗)2 ≈ VarFn(θ̂∗n),

where

θ∗ = 1
B

B∑
b=1

θ̂∗n,b ≈ EFn(θ̂∗n).

Note that the random selection of bootstrap samples is not an essential aspect of the (nonparametric) bootstrap.
At least in principal, we could enumerate all bootstraps of samples of size n corresponding to all simple random
samples with replacement from X = (X1, . . . , Xn) and calculate the exact values of EFn(θ̂n) and VarFn(θ̂n)
rather than estimating them. One can easily observe that there are two sources of errors when we perform
bootstrapping:

33

1. The error induced by using Fn instead of F or essentially X1, . . . , Xn instead of the whole population. This
error happens because n is finite.

2. The simulation error produced by failing to enumerate all bootstrap samples.

After we observed our data we do not have any further control on the first error, while the second source of
error can be controlled by making B sufficiently large. In practice, it usually suffices to take B = 10, 000. So,
we can ignore the second source of error.

VarF (θ̂n)
O(1/

√
n)

≈ VarFn(θ̂n)
O(1/

√
B)

≈ V̂arB(θ̂n).

In the following sections we further explain parametric and nonparametric bootstrap methods and show that the
way that we approach these problems are slightly different.

4.2 Parametric Bootstrap

Suppose F belongs to a parametric family indexed by a parameter λ. That is, F (·) = Fλ(·) with pdf fλ(·).
Let θ = T (Fλ) be the parameter of interest. Since we have the likelihood function, we can estimate θ using its
MLE. Suppose λ̂ is the MLE of λ, then by the invariance property of the MLE, Fλ will be estimated by F

λ̂
and

accordingly θ by θ̂ = T (F
λ̂
). However, there are many cases where finding the sampling distribution of θ̂ might

be difficult or the sample size is small such that one can not rely on the asymptotic theory to obtain the variance
of θ̂. In such cases we can simply use a parametric bootstrap. Suppose X∗1 , . . . , X∗n are i.i.d. samples from F

λ̂

and let λ̂∗ be its corresponding MLE. The parametric bootstrap approximates the distribution of

θ̂ − θ = T (F
λ̂
)− T (Fλ),

with the distribution of
θ̂∗ − θ̂ = T (F

λ̂∗
)− T (F

λ̂
)

However, as we show later, if one needs to make sure, as the testing hypothesis is done under the null hypothesis,
the bootstrap should reflect the null hypothesis correctly.

Example 1. Suppose X1, . . . , Xn be i.i.d. samples from a N(µ, σ2) distribution where µ ∈ R, σ > 0 and the
sample size is small. Assume that λ = (µ, σ2)> is unknown and we are interested in θ = µ. The MLE of λ is
λ̂ = (X̄, 1

n

∑n
i=1(Xi − X̄)2), and so θ̂ = X̄. We know that

θ̂ − θ ∼ N(0, σ
2

n
).

Since σ2 is unknown we can not use this distribution to make inference about θ. In addition, the sample size is
small to get a good estimator of σ2 and use the t-distribution to make inference about θ. However, we can use
the bootstrap method. To this end, let

F̂ = F
λ̂

= N(X̄, σ̂2),

as a new distribution with parameters X̄ and σ̂2 = 1
n

∑n
i=1(Xi−X̄)2. We now draw bootstrap samples X∗1 , . . . , X∗n

from F
λ̂
. Let

X̄∗ = 1
n

n∑
i=1

X∗i and σ̂2∗ = 1
n

n∑
i=1

(Xi − X̄)2.

So θ̂∗ = X̄∗ and
θ̂∗ − θ̂ ∼ N(0, σ̂

2

n
).

34

Thus, the bootstrap variance estimator of θ̂ is given by

Varboot(θ̂) = VarF (θ̂ − θ)
≈ Var

F̂
(θ̂∗ − θ̂)

= σ̂2

n
= 1
n2

n∑
i=1

(Xi − X̄)2.

In Example 1 we were able to obtain analytical solutions. In general, when analytical solutions are not possible
or very hard to obtain, we simulate B bootstrap samples

X∗1,b, X
∗
2,b, . . . , X

∗
n,b ∼ Fλ̂, b = 1, . . . , B,

and calculate
θ̂∗1, θ̂

∗
2, . . . , θ̂

∗
B,

where each of which are estimates of θ̂. So, we can use the empirical bias and variance of these replicates to
estimate the bias and the variance of θ̂. In other words

BiasB(θ̂) ≈ 1
B

B∑
b=1

(θ̂∗b − θ̂),

and

VarB(θ̂) ≈ 1
B − 1

B∑
b=1

(θ̂∗b − θ∗)2,

where θ∗ = 1
B

∑B
b=1 θ̂

∗
b .

4.3 Nonparametric Bootstrap

In nonparametric bootstrap, which is very popular in practice, we do not impose any parametric assumption on
F . Suppose F belongs to a nonparametric family F of distributions and X1, . . . , Xn is a random sample of size
n from F . The usual estimator of F is the edf

Fn(t) = 1
n

n∑
i=1

I(Xi ≤ t) = #{Xi ≤ t}
n

, t ∈ R.

We note that sampling from Fn is equivalent to resampling from X1, . . . , Xn with replacement. As in parametric
bootstrap, we can sometimes perform the bootstrap analytically but most often we need to use the Monte Carlo
approach. As an example, consider estimating the population mean θ = T (F) =

∫
xdF (x). The plug-in estimator

of θ is
θ̂ = T (Fn) = 1

n

n∑
i=1

Xi = X̄.

Consider a bootstrap (i.i.d.) sample
X∗1 , . . . , X

∗
n ∼ Fn,

and let X̄∗ = 1
n

∑n
i=1X

∗
i be the bootstrap sample mean. Hence,

EFn(X̄∗) = 1
n

n∑
i=1

EFn(X∗i)

= 1
n

n∑
i=1

{
X1
n

+ . . .+ Xn

n

}
= X̄.

35

Also

VarFn(X̄∗) = 1
n2

n∑
i=1

VarFn(X∗i)

= 1
n
EFn(X∗i − X̄)2

= 1
n

{
(X1 − X̄)2

n
+ . . .+ (Xn − X̄)2

n

}

= 1
n2

n∑
i=1

(Xi − X̄)2.

This is a very simple but general function which can be used to bootstrap a Statistic by repeated sampling
from a Population when the sampling is repeated B times with sample size n.

boot.approx <- function(Population, Statistic, B, n) {
out <- numeric(B)
for(b in 1:B) out[b] <- Statistic(sample(Population, n, replace=TRUE))
return(out)
}

4.4 Example 1: Gamma distribution

Suppose we have a population which is generated from a Gamma(α = 2, β = 1/3) distribution with pdf

f(x) = 1
Γ(α)βαx

α−1e−
x
β , x, α, β > 0.

We are going to take bootstrap samples to see the variability of the sample variance as an estimator of the
population variance V ar(X) = α

β2 = 18.

set.seed(1)
U <- rgamma(100, 2, 1/3)
par(mfrow=c(1,3), mgp=c(1.8, 1, 0), mar=c(3,3,2,1), family="Times", cex.lab=1,cex=1)
out1 <- boot.approx(U, var, B=5000, n=5)
out2 <- boot.approx(U, median, B=5000, n=5)
out3 <- boot.approx(U, mean, B=5000, n=5)
hist(out1, freq=FALSE, xlab=expression(S[boot]^2), col="orange", border="white",main="")
abline(v=var(U), lwd=2, lty=2)
hist(out2, freq=FALSE, xlab=expression(Median[boot]), col="orange", border="white",main="")
abline(v=median(U), lwd=2, lty=2)
hist(out3, freq=FALSE, xlab=expression(Mean[boot]), col="orange", border="white",main="")
abline(v=mean(U), lwd=2, lty=2)

print(quantile(out1, c(0.05, 0.95)))

5% 95%
1.901586 25.814964

36

Sboot
2

D
en

si
ty

0 20 40

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Medianboot

D
en

si
ty

0 4 8 12
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

Meanboot

D
en

si
ty

2 4 6 8 12

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Figure 27: Bootstrap estimates of the sampling distributions of the variance, median and mean in a Gamma
distribution

print(quantile(out2, c(0.05, 0.95)))

5% 95%
2.467276 8.465507

print(quantile(out3, c(0.05, 0.95)))

5% 95%
3.338046 8.180469

4.5 Example 2 : Asset Management

This is based on Section 5.2 of the book An Introduction to Statistical Learning: with applications
in R. Suppose we wish to invest a fixed sum of money in two financial assets that yield returns of X and Y ,
respectively where X and Y are random quantities. We will invest a fraction α of our money in X, and will
invest the remaining 1− α in Y . We wish to choose α that minimizes the total risk. In other words, we want to
minimize

V ar(αX + (1− α)Y).

It can easily be shown that the minimum value of α is given by

α = σ2
Y − σXY

σ2
X + σ2

Y − 2σXY
,

where σ2
X = V ar(X), σ2

Y = V ar(Y) and σXY = Cor(X,Y). To perform a bootstrap analysis for this example
we first write a function to generate an (X,Y) pair as the underlying population.

37

gen.xy = function(n, rho=0.4, seed=NULL) {
if (!is.null(seed)) set.seed(seed)
z1 = rnorm(n)
z2 = rnorm(n)
x = z1
y = rho*z1 + sqrt(1-rho^2)*z2
return(list(x=x,y=y))

}

Here we write the function needed to estimate α.

alpha.fn = function(data, index=1:length(data$x)) {
x = data$x[index]
y = data$y[index]
return((var(y)-cov(x,y))/(var(x)+var(y)-2*cov(x,y)))

}

The true value of α is given by

alpha.true = alpha.fn(gen.xy(1e7))

Each panel obtained display 100 simulated returns for investments X and Y .

n = 100
par(mfrow=c(2,2), mar=c(4, 3, 1, 1), cex=0.7,cex.lab=0.75, family="Times")
data = gen.xy(n,seed=1)
plot(data$x,data$y, pch=20, col="darkgreen", xlab="X", ylab="Y")

data2 = gen.xy(n,seed=2)
plot(data2$x,data2$y, pch=20, col="darkgreen", xlab="X", ylab="Y")

data3 = gen.xy(n,seed=3)
plot(data3$x,data3$y, pch=20, col="darkgreen", xlab="X", ylab="Y")

data4 = gen.xy(n,seed=4)
plot(data4$x,data4$y, pch=20, col="darkgreen", xlab="X", ylab="Y")

From left to right and top to bottom, the resulting estimates for α are 0.5435079, 0.3680172, 0.629502 and
0.527159, respectively

Let us see how variable is this α̂ over 1000 simulations (data sets) from the true population. Also, we can obtain
the histogram of estimates of α based on 1000 bootstrap samples from a single data set when the we used seed=1.

R = 1000
alpha.hat.real = numeric(R)
for (r in 1:R) {

data.r = gen.xy(n)
alpha.hat.real[r] = alpha.fn(data.r)

}

par(mfrow=c(1,2), family="Times")

38

−2 −1 0 1 2

−
2

−
1

0
1

2

X

Y

−2 −1 0 1 2

−
2

−
1

0
1

2

X

Y

−2 −1 0 1

−
2

−
1

0
1

2

X

Y

−1 0 1 2

−
2

−
1

0
1

2

X
Y

Figure 28: Four different 100 simulated returns for investemnets X and Y

hist(alpha.hat.real, col="orange",
main="Samples from true population",
xlab=expression(hat(alpha)))

abline(v=alpha.true, lwd=3, lty=2)

B = 1000
alpha.hat.boot = numeric(B)
for (b in 1:B) {

index.b = sample(1:n,replace=TRUE)
alpha.hat.boot[b] = alpha.fn(data,index.b)

}

hist(alpha.hat.boot, col="lightblue",
main="Bootstrap samples from data with seed=1",
xlab=expression(hat(alpha)))

abline(v=alpha.true, lwd=3, lty=2)

It is easy to see that the simulated standard error for α̂ is 0.0754701. Here the bootstrap standard estimates is
0.071239. Also, the bootstrap bias estimate and a basic bootstrap confidence interval for α are given by

alpha.hat = alpha.fn(data)

mean(alpha.hat.boot) - alpha.hat

[1] -0.001993025

39

Samples from true population

α̂

F
re

qu
en

cy

0.3 0.4 0.5 0.6 0.7 0.8

0
50

10
0

15
0

20
0

25
0

Bootstrap samples from data with seed=1

α̂

F
re

qu
en

cy

0.3 0.4 0.5 0.6 0.7 0.8

0
50

10
0

15
0

20
0

25
0

Figure 29: Histogram of the estimtes of the proportion of investment of X using bootstrap method and corre-
sponding one when samples are directly obtained from the underlying population

alpha = 0.05
q.lo = quantile(alpha.hat.boot, prob=alpha/2)
q.hi = quantile(alpha.hat.boot, prob=1-alpha/2)
basic.boot.int = c(2*alpha.hat-q.hi, 2*alpha.hat-q.lo)
basic.boot.int

97.5% 2.5%
0.4071947 0.6901904

4.6 Example 3. Using R packages

Although writing R codes for implementing bootstrap ideas is simple but there are R packages that could also be
do bootstrapping. One of the famous one is the package called boot which you can easily download and install
in RStudio. After you installed the package boot then one can use the function boot() which takes several
argument. The first three arguments that are required are as follow boot(data, statistic, R)

• data: A data vector, matrix, or data frame to which bootstrap re-sampling is to be applied.

• Statistic: A function that returns the (vector-valued) statistic to be bootstrapped. This function must
take two inputs as (data, indices) where the data will be put in order by “indices”.

• R: The number of bootstrap replications (We used B in the notes).

Now, I describe how to use the package to implement some bootstrap examples.

Again, we use the data set LawSchool.txt which gives the average LSAT and GPA scores for the 1973 entering
classes of 15 American Law schools.

dir <- getwd()
LawSchool<-read.table(file= paste(dir, "/LawSchool.txt", sep=""))
attach(LawSchool)

40

The data set are plotted in Figure 1.

library(calibrate)

Loading required package: MASS

plot(GPA, LSAT, pch=20, cex=1, xlim=c(2.7, 3.5), ylim=c(540, 670), col="red")
textxy(GPA, LSAT, 1:length(LSAT), offset=0.75, cex=0.75)

2.8 3.0 3.2 3.4

54
0

58
0

62
0

66
0

GPA

LS
AT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 30: The scatter plot of the GPA and LSAT scores

We first define a function to compute the statistic that we are interested in bootstrapping, which is here the
correlation coefficient. Remember that the correlation coefficient between LSAT and GPA is r = 0.7763745.

r.statistic<-function(Pop, indices){
Pop<-Pop[indices,]
r<-cor(Pop$LSAT, Pop$GPA)
return(r)
}

Now, to get a bootstrap confidence interval from say B=500 bootstrap samples using boot() and following the
percentile method.

library(boot)
boot.results<-boot(LawSchool, r.statistic, R=500)
boot.ci(boot.results, conf=0.9, type="perc")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 500 bootstrap replicates
##
CALL :
boot.ci(boot.out = boot.results, conf = 0.9, type = "perc")
##

41

Intervals :
Level Percentile
90% (0.5285, 0.9526)
Calculations and Intervals on Original Scale

We can also get the histogram of bootstrap estimate of the correlation coefficient.

hist(boot.results$t, col="brown", border="white", xlab="r", main="")
abline(v=cor(LSAT, GPA), lwd=2, lty=3)

r

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
12

0

Figure 31: Histogram of bootstrap sampling distribution of correlation coefficients

5 Bootstrap for estimating prediction error

There are several approaches that can be used to estimate the prediction error pertinent to a prediction (statistical
learning) model.

5.1 Using bootstrap data for model fitting and original data for prediction

One approach is to fit the model in question on a set of bootstrap samples, and then keep track of how well it
predicts the original training set. Suppose we have B bootstrap datasets B.Datab, b = 1, . . . , B generated from
the training data T . Let f̂∗b(xi) be the predicted value at xi, from the model fitted to the bth bootstrap dataset
B.Datab. Then, one can estimate the prediction error as follows:

Êrrboot = 1
B

1
n

B∑
b=1

n∑
i=1

L(yi, f̂∗b(xi)). (4)

In this approach, the bootstrap datasets are used for the training purpose, while the original training set is used
for testing. As bootstrap samples share a lot of information with the original sample, one can easily see that
this method will not work well in general. The overlap between the training and test error can make overfit
predictions look unrealistically good.

42

Consider for example a 1-nearest neighbor classifier applied to a two-class classification problem with the same
number of observations in each class. Suppose that predictors and class labels are independent of each other.
The true test error is 0.5. But contribution to the bootstrap estimate Êrrboot will be zero unless the observation
i does not appear in the bootstrap sample b. Here we perform a very simple simulation study where we generate
p = 10 independent features from normal distribution independent of class labels. We use 1NN as classifier on
bootstrapped data and find the prediction error using the original sample as our test data.

set.seed(2021)
n<-100
p<-10
B<- 1000

X <- matrix(rnorm(n*p), n, p)
y<- sample(rep(0:1, n/2), n, replace=FALSE)

Data <- data.frame(X, y)

errors <- c()
for (b in 1:B){

inds<- sample(1:nrow(Data), n, replace=TRUE)
B.data <- Data[inds,]

knn.train <- class::knn(train = B.data[, -ncol(B.data)],
test = B.data[, -ncol(B.data)],
cl = B.data$y,
k = 1, prob = FALSE)

knn.test <- class:: knn(train=B.data[, -ncol(B.data)], # train x
test = Data[, -ncol(Data)], # test x
cl = B.data$y, #train y
k = 1, prob = FALSE)

test.error.knn <- mean(Data$y != knn.test)
errors = c(errors, test.error.knn)

}

mean(errors)

[1] 0.19983

We observe that estimated test error is 0.19983 which is far below the test error. Note that,

Pr(observation i ∈ bootstrap b) = 1− (1− 1
n

)n

≈ 1− e−1

= 0.632.

So, the expectation of Êrrboot is about 0.5 × 0.368 = 0.184, similar to the number we observe in our simulation
study, which is far below the correct test error rate 0.5.

43

5.2 Using bootstrap data for model fitting and left out data for prediction

As we showed earlier there is about 63 percent chance that any observation being selected in the bootstrap
sample b. That means from a sample of size n on average around 37 percent of the observations will be left
out. So, mimicking the idea of cross-validation, a better approach is to keep track of predictions from bootstrap
samples not containing that observation. The leave-one-out bootstrap estimate of prediction (test) error can be
obtained by

Êrr
(1)

= 1
n

n∑
i=1

1
|C−i|

∑
b∈C(−i)

L(yi, f̂∗b(xi)) (5)

Here
C(−i) = {b ∈ {1, . . . , B} : (xi, yi) /∈ B.Datab},

is the set of indices of the bootstrap samples b that do not contain observation i, and |C(−i)| is the number of
such samples. To calculate (5) we either have to choose B large enough to ensure that all the |C−i|’s are greater
than zero, or we can leave out the terms corresponding to those with |C−i| = 0.

Lets us use this approach in our toy example.

B <- 500
C<-matrix(FALSE, n,B)
L<-matrix(0, n, B)
for (b in 1:B){

inds<- sample(1:nrow(Data), n, replace=TRUE)
ind.unique<- unique(sort(inds, decreasing=FALSE))
C[-ind.unique,b] <- TRUE

B.data <- Data[ind.unique,]
T.data <- Data[-ind.unique,]
knn.train <- class::knn(train = B.data[, -ncol(B.data)],

test = B.data[, -ncol(B.data)],
cl = B.data$y,
k = 1, prob = FALSE)

knn.test <- class:: knn(train=B.data[, -ncol(B.data)], # train x
test = T.data[, -ncol(Data)], # test x
cl = B.data$y, #train y
k = 1, prob = FALSE)

L[-ind.unique, b] <- (T.data$y != knn.test)
}

error <- mean(apply(L, 1, sum)/apply(C, 1, sum))
error

[1] 0.5467914

As we see here test error estimate here is not very bad 0.5467914. In other words, Êrr
(1)

solved the overfitting
problem suffered by Êrrboot. But it still has the training set size bias. The average number of distinct observations
in each bootstrap sample is about 0.632× n, so its bias will roughly behave like that of twofold cross-validation.

44

Thus, if the learning curve has considerable slope at sample size n/2, the leave-one-out bootstrap will be biased
upward as an estimate of the true error.

One might also want to consider the following approach to estimate the prediction error. For each bootstrap
sample B.Datab denote the left out observations by T.Datab = T − B.Datab, b = 1, . . . , B. Let

Ibi =
{

1 if (xi, yi) ∈ B.Datab,
0 if (xi, yi) /∈ B.Datab.

The leave-one-out bootstrap estimate of prediction (test) error can then be obtained by

Êrr
∗

=
∑n
i=1

∑B
b=1 IBi L(yi, f̂∗b(xi))∑n
i=1

∑B
b=1 IBi

(6)

errors <- c()
for (b in 1:B){

inds<- sample(1:nrow(Data), n, replace=TRUE)
B.data <- Data[inds,]
T.data <- Data[-inds,]
knn.train <- class::knn(train = B.data[, -ncol(B.data)],

test = B.data[, -ncol(B.data)],
cl = B.data$y,
k = 1, prob = FALSE)

knn.test <- class:: knn(train=B.data[, -ncol(B.data)], # train x
test = T.data[, -ncol(T.data)], # test x
cl = B.data$y, #train y
k = 1, prob = FALSE)

test.error.knn <- mean(T.data$y != knn.test)
errors = c(errors, test.error.knn)

}

mean(errors)

[1] 0.5487562

This approach also results in a relatively good estimate of the test error, i.e., 0.5487562.

5.3 0.632 estimator

The 0.632 estimator is designed to alleviate the issue with the bias mentioned in calculating leave-one-out
bootstrap approach. This estimator is defined as

Êrr
(0.632)

= 0.368 · err + 0.632 · Êrr
(1)
. (7)

Here err is the training error

err = 1
n

n∑
i=1

L(yi, f̂(xi)),

45

using the whole training dataset. Note that, the deviation of the 0.632 estimator is complex; intuitively it pulls
the leave-one-out bootstrap estimate down toward the training error rate, and hence reduces its upward bias.

The 0.632 estimator works well in light fitting situations, but can break down in overall ones. To see this, let us
consider our toy example again, using a 1NN classifier and as we see below, the training error is 0.

knn.train <- class::knn(train = Data[, -ncol(Data)],
test = Data[, -ncol(Data)],
cl = Data$y,
k = 1, prob = FALSE)

(err.bar <- sum(Data$y != knn.train))

[1] 0

So, the 0.632 estimator gives Êrr
(0.632)

= 0.368 · err + 0.632 · Êrr
(1)

= 0.3455721. However, the true error is 0.5.

5.4 Adjusted 0.632 estimate

One can improve the 0.632 estimator by taking into account the amount of overfitting. Define γ as the non-
information error rate, to represent the error rate of our prediction rule if the inputs and class labels were
independent. An estimate of γ can be obtained by averaging the prediction rule error over all possible combina-
tions of targets yi, and predictors xi′ :

γ̂ = 1
n2

n∑
i=1

n∑
i′=1

L(yi, f̂(xi′)).

Using this, the relative overfitting rate is defined by

R̂ = Êrr
(1)
− err

γ̂ − err ,

a quantity that ranges from 0 if there is no overfitting (i.e., Êrr
(1)
− err) to 1 if the overfitting equals the

no-information value γ̂ − err. Finally, the adjusted 0.632 rule is defined as

Êrr
(0.632+)

= (1− ŵ) · err + ŵ · Êrr
(1)
, (8)

with
ŵ = 0.632

1− 0.368R̂
.

Note that here, the weight ŵ ranges from 0.632 if R̂ = 0 to 1 if R̂ = 1. In other words, Êrr
(0.632+)

ranges from
Êrr

(0.632)
to Êrr

(1)
.

Again, the derivation of Êrr
(0.632+)

is technical. But, roughly speaking, it produces a compromise between the
leave-one-out bootstrap and the training error rate that depends on the amount of overfitting. For the 1NN
approach with features that are independent of class labels, ŵ = R̂ = 1, and so Êrr

(0.632+)
= Êrr

(1)
, which has

the correct expectation of 0.5. In other problems with less overfitting, Êrr
(0.632+)

will lie somewhere between err
and Êrr

(1)
.

46

	Test Error
	Different methods for estimating the Test Error
	Sample-splitting
	Cross-validation
	Leave-One-Out Cross Validation (LOOCV)
	K-fold cross-validation

	1-NN classifier
	Logistic Regression

	Cross-validation with unsupervised screening
	Bootstrap
	Bootstrap for Bias correction
	Parametric Bootstrap
	Nonparametric Bootstrap
	Example 1: Gamma distribution
	Example 2 : Asset Management
	Example 3. Using R packages

	Bootstrap for estimating prediction error
	Using bootstrap data for model fitting and original data for prediction
	Using bootstrap data for model fitting and left out data for prediction
	0.632 estimator
	Adjusted 0.632 estimate

