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1 What is Statistical Learning?

Statistical Learning is considered as an activity or process of gaining knowledge or skill by studying, practicing,
being taught, or experiencing something. Statistical learning is a fundamental ingredient in the training of a modern
data scientist. For a data scientist it is important to understand the ideas behind the various techniques, in order
to know how and when to use them. One has to understand the simpler methods first, in order to grasp the more
sophisticated ones. It is important to accurately assess the performance of a method, to know how well or how badly
it is working. Sometimes simpler methods perform as well as fancier ones. Statistical learning is an exciting research
area, having important applications in science, industry and finance.

There are several applications for Statistical learning. For example:

1. Identify the risk factors for prostate cancer.

2. Classify patients to those having osteoporosis or not having it using DXA images obtained from patients.

3. Predict whether someone will have a heart attack on the basis of demographic, diet and clinical measurements.
Another similar problem is predicting Alzheimer’s disease years in advance.

4. Customize an email spam detection system.

5. Identify the numbers in a handwritten zip code.

6. Classify a tissue sample into one of several cancer classes, based on a gene expression file.

7. Establish the relationship between salary and demographic variables in population survey data.

8. Classify the pixels in a LANDSAT image, by usage.

In most of these problems we have an independent variable or outcome Y and one or more dependent variable or
covariates X = (X1, . . . , Xp). One usually observes these variables for various “subjects”. The goal is to figure our
what effects do the covariates have on the outcome? How well can we describe these effects? Can we predict the
outcome using the covariates?

In general we write
Y = f(X) + ε,

where ε captures measurement errors and other discrepancies including the effect of some important variables that
are not included in the study. Usually it is assumed that E[ε|X] = 0 with V ar(ε|X) = σ2 being fixed but unknown.
Also, we assume that X is given and even if it is random, after observing it we consider it as fixed values. There is
another way of looking at this problem when X is not fixed. Many recent papers are published on this subject and
if you are interested let me know to introduce you a few very interesting papers to read.

2 Supervised, reinforcement and unsupervised learning

If we knew f(X) we could use that to predict the Y value for a new individual with a given X = x. We could also
understand which components of X are important in explaining Y and which are not relevant. If f(X) is not very
complicated we might be able to understand how each Xi in X affects Y . In general we could use the model for
inference and/or prediction.

The problem is that f(X) is unknown and needs to be estimated. In a statistical learning course we learn different
techniques to estimate f(X) and dig in more to better understand how these methods are developed, what are their
properties, for what type of problems they are most effective and how one can extend the methods to obtained new
ones. We learn how to evaluate the performance of each method and how to deal with problems where Y is not
numeric or X is very high dimensional.
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Figure 1: The relationship between flexibility of statistical learning models and their interpretability (Source: Ele-
ments of Statistical Learning)

There are different ways to estimate f(X) and you have already seen a few of such techniques in your previous
courses. Some of these methods are very complicated and some are simple. In practice there are some trade-offs that
you should be aware of as a data scientist:

1. Prediction accuracy versus interpretability. For example linear models are easy to interpret but additive
models based on cubic splines are not.

2. Good fit versus over-fit or under-fit. You should learn how to know when the fit is just right?

3. Parsimony versus black-box. We often prefer a simpler model involving fewer variables over a black-
box predictor involving them all. For example a deep neural network could provide a good fit and accurate
prediction in many situations, but it is not often a useful method due to the lake of parsimony. In many medical
applications decision makers want to see parsimony and often do not trust black boxes.

The above problems are called supervise learning as there is always a response variable Y which will supervise us
during the estimation (model building) process and will tell us if we have done a good job in estimating f(X).

In other words suppose we fit a model f̂(x) to some training data set T = {(xi, yi) ∈ Rp × R, i = 1, . . . , n} and we
wish to see how well it performs. One can compute the average squared prediction (estimation) error over T to get
the training error:

MSETr = Averagei∈T [yi − f̂(xi)2],

which may be biased toward more overfit models. Instead, if possible we should compute this using a test data that
was not used in the training process of f̂(x). Suppose Te = {(xi, yi) ∈ Rp × R, i = 1, . . . ,m} is a test data of size
m. After finding f̂(x) using the training data one can get a good idea of its performance using the estimated test
error:

MSETe = Averagei∈Te
[yi − f̂(xi)2],

In practice, and as we will show it later in this chapter, increasing the complexity of the fitted model will often
decreases the value of the training error MSETr but increases the test error MSETe. As prediction is more important
and often is the ultimate goal, finding a model that has a small MSETe is desirable and often this is not obtained
by using very complex models. Such models tend to overfit the training data as they will end up memorizing the
data and have a poor performance when they are faced with data that are not similar to the training data set.
Imagine that a student start memorizing all the questions in a note without actually learning or understanding the
idea behind the topic. Of course student will perform very well on any question from the note but what is going to
happen if the student faces a new sets of problems from the same topic but very different from those he or she has
memorized?

In general we have three types of problems in a statistical learning course:
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1. Supervised learning: Here we have a clearly defined response variable (or variables) Y and a set of covariates
X and the goal is to find the relationship between Y and X in order to perform statistical inference, prediction,
etc. The response variable is like a teacher in this type of problems and it is used to supervise us and show us
our mistakes until we get good at what we do.

2. Reinforcement learning: Here the ultimate goal is to develop learning system that receives a reward signal
and tries to learn to maximize the reward signal. We do not consider this type of learning in this course but
feel free to consult with the book Reinforcement Learning: An Introduction by Sutton and Barto (2018).

3. Unsupervised learning: Here there is no clearly defined objective and we often do not have a predefined
response variable Y . So, nothing is there to supervise us and nth ultimate goal is to explore the data and
look for interesting patterns in the data. Usually this is the starting point to perform a subsequent supervised
learning.

3 Different methods for estimating a regression function

Let us get back to our supervised learning problem and suppose after observing Xi = xi we want to estimate Yi
using f(xi). What is the best f(·) that we can use to do this take? Recall that for a general model, and in particular
the i-th observation, we have

Yi = f(xi) + εi

with εi = Yi − f(xi) such that E(εi|xi) = 0. Consider the squared error loss function

L(Yi, f(xi)) = (Yi − f(xi))2, (1)

as a criterion to calculate the error for using f(xi) instead of the true value Yi. Given the conditional distribution of
Y |X = x, it is easy to see that the best f(xi) that can be used is indeed the regression function m(xi) = E[Yi|Xi =
xxi]. So, the above model can be approximated with

Yi = m(xi) + εi

= E[Yi|Xi = xi] + εi. (2)

In other words, Yi can be considered as the sum of the value of the regression function at X = xi and some error
εi, where expected value of the error is 0. So, one can use m(xi) instead of Yi and be sure that this function is the
best function one can use to predict Yi. This sounds great, but why don’t we use this in practice? and if this is
that simple, why do we have all these statistical and machine learning techniques such as SVM, deep learning, LDA,
QDA, spline regression models, kNN, etc.

The problem is that we do need to know the distribution of Y give X = x (for fixed X strategy) or sometimes the
joint distribution of Y given X (for random X strategy) to be able to calculate E[Y |X = x]. If we knew this we
could easily calculate m(·) and the problem was solved.

In practice people address this problem in different ways. For example, one might assume a specific distributional
form between Y and X such as multivariate normality, etc. When X is high dimensional (which is the case for many
modern applications of data science) verifying such assumptions is extremely difficult. Some people have tried to
make some parametric assumptions about m(x) itself. For example, one might assume that m(x) = β0 + x>β, etc.
All these spline, cubic spline, polynomial and additive regression models are attempts to accurately estimate m(·).

Parametric models (e.g., linear models) make strong assumptions about the structure of the relationship between the
set of features X and the response variable Y that might not be true. These models often yield stable but possibly
inaccurate predictions. In the real world, most of the data does not follow the typical theoretical assumptions made.

Another approach is to use non-parametric methods. When we say a technique is non-parametric , it means that
it does not make any assumptions on the underlying data distribution. In other words, the model structure is
determined from the data. One of such methods in the k-Nearest Neighbors (kNN) method that makes very mild
structural assumptions and its predictions are often accurate but can be unstable. kNN is a nonparametric approach in
statistical learning that is used for classification and regression. In general there are four paradigms of nonparametric
approach towards classification and/or regression problems. These include

1. Local averaging (e.g., Partitioning estimates, Nadaraya-Watson kernel estimate, kNN, etc.),
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2. Local modeling (e.g., local polynomials, etc.),
3. Global averaging (e.g., least squares), and
4. Penalized modeling (e.g., penalized least squares, cubic splines, thin-plate splines, etc.).

We saw that Yi can be considered as the sum of the value of the regression function at xi and some error εi, where
expected value of the error is 0. This motivates the construction of the estimates by local averaging, i.e., estimation
of m(xi) by averaging the yj values of those data points that their corresponding xj ’s are close to xi. That is

m̂(xi) =
n∑
j=1

Wn,j(xi;x1, . . . ,xn)Yj , (3)

where the weights Wn,j(xi;x1, . . . ,xn) depend on x1, . . . ,xn, are non-negative weights and get smaller as xj gets
far from xj . This helps to estimate the Yi value corresponding with xi by borrowing information from close-by
observations but giving more weights to those in the proximity of xi and less weights to those that are further away
from xi.

4 kNN as a local averaging method for estimating a regression function

As we said, kNN estimate is an example of a local averaging method that is memory-based and works very well in
many applications. One can also rewrite kNN estimators as an example of kernel methods having a data dependent
metric. In kNN given a point x0, we find the k training points x(r), r = 1, . . . , k, closest in distance to x0 and the
estimate of the y-value associated with x0 is obtained using the y(r) values in the neighborhood. For example, in
a classification problem when y ∈ {0, 1}, we simply use a majority vote among the k-neighbors of x0. If xi and
xj are equidistant from x0 there will be a tie. There are several rules for tie breaking. For example, one can use
randomization. Also, xi might be declared closer if i < j, i.e., the tie breaking is done by indices. For the sake of
simplicity we assume that the probability of ties is zero.

kNN can also be used for regression. In this approach the predicted value of Y at x is the average (or median) of
the values of its k nearest neighbors.

As mentioned above, kNN is a memory-based approach as it requires no model to fit and to make prediction one
needs to have access to all the data points. In other words, kNN does not use the training data points to do any
generalization and there is no explicit training phase or it is very minimal. This also means that the training phase
is pretty fast. Lack of generalization means that kNN keeps all the training data. To be more exact, all (or most) of
the training data is needed during the testing phase.

Suppose we have a training data set

T = {(xi, yi) ∈ Rp × R, i = 1, . . . , n}

and suppose x0 ∈ RP is a new observation. kNN Algorithm is based on feature similarity. In this approach, how
closely out-of-sample features resemble our training set determines how we classify a given data point. To formalize
this, let

di(x0) = d(xi,x0), i = 1, . . . , n,

In the rest of this chapter we use the Euclidean distance as our distance measure, that is

di(x0) = ||x0 − xi|| =

√√√√ p∑
j=1

(x0j − xji)2, i = 1, . . . , n.

Remark 1. Make sure that you repeat the numerical analysis in this Chapter using other distance measures to see
how results are changing with the metrics.
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Remark 2. Typically, we first standardize each of the features to have the mean 0 and variance 1. When we have
more than one feature, components of X might have different scales and magnitudes. For example, suppose we are
working with 3 features and one of them takes values between 0 and 1 while the other two take very large values. After
calculating the distance measures, there might be cases where the feature with small scale values become uninformative
and the algorithm would essentially rely on dimensions whose values are substantially larger.

Using di(x0) one can reorder the data (x1, y1), . . . , (xn, yn) according to increasing values of di(x0). To this end, let

d(1:n)(x0) ≤ d(2:n)(x0) ≤ . . . ≤ d(n:n)(x0)

be the ordered distance of xi’s from x0. In kNN we define the k-nearest neighbors to x0 as those (xi, yi) ∈ T such
that di(x0) ≤ d(k:n)(x0). Let the indexes of those points be

Nk(x0) = {i ∈ {1, . . . , n} : di(x0) ≤ d(k:n)(x0)}.
In a 1NN or simply the nearest neighbor (NN) case

N1(x0) = i∗ = argmini=1,...,n||x0 − xi||.

The idea is now to use these nearby data points to x0 to predict its associated value y0.

The parameter k controls the stability of the kNN estimates. When k is small the algorithm is sensitive to the data
and reduces to NN when k = 1. When k increases the estimates become more stable. kNN estimators are very simple
and have many applications. By varying the number of neighbors k, one can achieve a wide range of flexibility in
the estimate function m̂(x), with small k corresponding to a more flexible fit (low bias and large variance) and large
k less flexible (large bias and low variance).

Remark 3. It may appear that kNN fits have a single parameter k, the number of neighbors. The effective number
of parameters of the kNN approach is n

k and is generally bigger than the number of parameters one need to estimate
in a multiple regression (i.e., p), in our formulation, and gets smaller as k increases. To get an idea why this is
the case note that if the neighborhoods were non-overlapping, there would be n

k neighborhood and we would fit one
parameter (a mean) in each neighborhood.

In general, kNN estimators show satisfactory performance in lower dimensions. If special structure between the input
X and output Y known to exist, this can be used to reduce both the bias and the variance of the estimates.

4.1 kNN for Regression

Given a random pair (X, Y ) ∈ Rp×R, recall that the best predictor of Y under the SEL function (1) is given by (2)

m(x) = E[Y |X = x],

which is called the regression function of Y on X. To construct a kNN estimate of m(x0), we fix an integer k ≥ 1
and define Wn,i(x0;x1, . . . ,xn) = 1

k in (3) for all the k points that are closest to x0. In other words,

m̂k(x0) = 1
k

∑
i∈Nk(x0)

yi,

where Nk(x0) contains the indices of the k closest points in x1, . . . ,xn to x0. The kNN approach assumes the
true function f(·) can be well approximated by locally constant function, which results in using a mean in each
neighborhood as an estimate.
Note that in m̂k(x) two approximations are happening:

1. expectation is approximated by averaging over sample data
2. conditioning at a point x0 is relaxed to conditioning on some region close to the target point.
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Remark 4. Under mild regularity conditions on the joint distribution of (X, Y ), one can show that as n, k −→ ∞
such that k

n −→∞ than m̂k(x) −→ E[Y |X = x] = m(x). Although this seems to be a very general result, the rate of
convergence is decreases exponentially with the dimension p, due to the curse of dimensionality.

Let us visualize kNN estimators using a very simple data set. To this end consider a data set when we have an scalar
X ∈ [0, 1] which is associated with Y through the following model:

m(x) = cos(10x) + 4x3 − 5x

We generate n = 15 observations from this model using

yi = m(xi) + εi, i = 1, . . . , 15,

where εi are iid normal random noises with mean 0 and standard deviation 0.5 resulting in the following scatter plot:

# set the seed to reproduce data generation in the future
set.seed(1)
x <- runif(15,0,1)
e <- rnorm(15,0,0.5)
y <- cos(10*x) + 4*x^3 -5*x+e
par(mfrow=c(1, 2))
plot(x, y, pch=20, col="darkgreen")
plot(x, y , pch=20, col="darkgreen")
curve(cos(10*x) + 4*x^3 -5*x, from=0, to= 1,

col="red", lwd=2, add=TRUE, lty=2)
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Figure 2: Simulated data from a population on the left where the true regression function is depicted by a red dashed
line in the right graph.

Here we only have 15 points. Let us study the behavior of kNN regression estimators with respect to the choice
of k. We show the kNN regression estimators for some values of k. To perform kNN for regression, we will need
knn.reg() from the FNN package. Notice that, we do not load this package, but instead use FNN::knn.reg to access
the function. Note that, in the future, we’ll need to be careful about loading the FNN package as it also contains a
function called knn. This function also appears in the class package which we will likely use later. The structure of
this function is as follows

knn.reg(train = ?, test = ?, y = ?, k = ?)

where

7



• train= the x’s of the training data
• test= the x’s at which we would like to make predictions
• y= the response for the training data
• k= the number of neighbors to consider

library(FNN)
par(mfrow=c(2, 2), mar=c(4, 3, 1, 1))
grid2 <- data.frame(x)
for(i in c(2, 5, 8, 15)){

pred.values <- FNN::knn.reg(train = x, test = grid2, y = y, k = i)
plot(x,y, main=paste("k=", i), pch=20, col="darkgreen")
curve(cos(10*x) + 4*x^3 -5*x, add=TRUE, lty=2, col="red", lwd=2)
ORD <- order(grid2$x)
lines(grid2$x[ORD],pred.values$pred[ORD], col="blue", lwd=2)
}
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Figure 3: KNN regression estimates fitted to our data points using different values of k

First of all by looking at the true model and what is fitted or might be fitted we can see that almost all the models
that we will end up fitting will be wrong but some of them might be useful, because there is a very low chance to
exactly guess or obtain the true underlying model. Anyway, using the above analysis we see that kNN regression
approach is a lazy learner and does not build an explicit model for the relationship between x and y. For small k is
very unstable and when k gets larger it becomes more stable. However, as you see by increasing k we increase the
bias and reduce the variability of the estimator.

Also, we observe that KNN regression estimators are very jagged. This can be easily explained by rewriting kNN
regression estimator m̂k(x) as follow

8



m̂k(x) =
n∑
i=1

wi(x)yi = (w1(x), . . . , wn(x))


y1
y2
...
yn

 ,

with

wi(x) =
{

1
k if xi is one of the k neigbours to x
0 Otherwise

.

Since wi(x) is discontinuous as a function of x, therefore m̂k(x) will also be discontinuous. Now, let us increase the
sample size and see how these estimators behave for larger sample sizes.
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Figure 4: Larger size simulated data from our previous population and its kNN regression estimates with different
values of k.

It seems that k plays an important role and needs to be selected carefully. We see that k = 1 is clearly over-fitting,
as it produced a highly variable model. Conversely, k = 80 is clearly under-fitting the data, as k = 80 is a very
simple, low variance model. In fact, here it is predicting a simple average of all the data at each point.

Choosing k: One can choose k using cross-validation which will be discussed in later chapters. Another method is
to set aside a test data and choose a k that works well on the test data. Let us use the mean squared errors as the
measure of accuracy for predicting Y using m̂(X).

mse <- function(obs, pred) {
mean((obs-pred)^2)

}

Now, we create a test data and we train our model using different values of k and see which values of k produces the
smallest MSE for our test data. We generate a test sample of size m = 60.
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set.seed(2)
test.x <- runif(60,0,1)
e.test <- rnorm(60,0,0.5)
test.y <- cos(10*test.x) + 4*test.x^3 -5*test.x+e.test

Now, we train our model using different different k values and calculate the training and test MSE’s as follow:

knn_reg_test_mse <- function(k, x.train, y.train, x.test, y.test){
x.test <- data.frame(x.test)
pred.values <- FNN::knn.reg(train= x.train,

test= x.test,
y= y.train,
k=k)$pred

mse(y.test, pred.values)
}

knn_reg_train_mse <- function(k, x.train, y.train){
x.grid <- data.frame(x.train)
pred.values <- FNN::knn.reg(train= x.train,

test= x.grid,
y= y.train,
k=k)$pred

mse(y.train, pred.values)
}

k <- 1:30

test_mse <- sapply(k,
knn_reg_test_mse,
x.train=x,
y.train=y,
x.test=test.x,
y.test = test.y)

train_mse <- sapply(k,
knn_reg_train_mse,
x.train=x,
y.train=y)

y_lim <- c(min(test_mse, train_mse), max(test_mse, train_mse))

par(mfrow=c(1, 2))

plot(k, test_mse, type="b", ylim=y_lim, pch=20, col="red")
points(k, train_mse, type="b", pch=18, lty=2, col="green" )
legend("topleft", col=c("green", "red"),

legend=c("Training Error", "Test Error"),
pch=c(5, 20))

plot(1/k, test_mse, type="b", ylim=y_lim, pch=20, col="red")
points(1/k, train_mse, type="b", pch=18, lty=2, col="green" )
legend("topright", col=c("green", "red"),

legend=c("Training Error", "Test Error"),
pch=c(5, 20))
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Figure 5: Training and test error estimates as a function of k and 1/k in our kNN regression problem

As we can see the minimum test error happens when $k=$10, resulting in an MSE of 0.3252452.

4.2 kNN regression is prone to curse of dimensionality

kNN estimators are universally consistent, which means

E(m̂k −m)2 −→ 0 as n −→∞,

with no assumption other than E(Y 2) <∞ provided we take k = kn such that kn −→∞ and kn

n −→ 0. For example,
one can take kn =

√
n. However, kNN regression estimators or in general any kNN estimator (in both regression

and classification context) could fail if the dimension of the input space is high. This is simply because the nearest
neighbors need to be close to the target point and can result in large errors. Assuming that the underlying regression
function m(x) in Lipschitz continuous, that is continuous and there exists a non-negative M such that

|m(xr)−m(xs)| ≤M ||xr − xs||2,

the kNN estimate with K ∝ n−
2

2+p satisfies

E
(
m̂k(x)−m(x)

)2 ≤ n−
2

2+p .

Note that this a rather poor error rate as the it depends on the dimension p in a poor way. Given a small ε > 0, if
one want to have E

(
m̂k(x)−m(x)

)2 ≤ ε then one needs to choose sample n such that n−
2

2+p ≤ ε or

n ≥ ε−
2+p

2 ,

which increases exponentially with p. This problem appears to be true for many other problems and it is known as
curse of dimensionality. In our kNN regression problem, suppose one want to make sure the error is less that ε = 0.1
or ε = 0.05, the sample size needed for this as a function of the feature dimension is as below:

e.bound<-function(e, p){e^(-(p/2+1))}
p<- c(1:10)

plot(p, e.bound(0.1, p), type="l", ylab="Sample Size", col="green", lwd=2)
points(p, e.bound(0.05, p), type="l", col="red")
legend("topleft", legend=c(expression(epsilon ~"="~0.05),

expression(epsilon ~"="~0.1)),
lwd=c(2, 3), col=2:3)
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Figure 6: Depicting curse of dimensionality in a kNN regression analysis

To overcome this curse of dimensionality one needs to make more assumptions about the underlying problem in
higher dimensions.

4.3 kNN for classification

kNN is very successful in classification when decision boundaries are very irregular. The idea behind kNN for
classification is based on the majority vote among observations that are close to the point we are interested in. For
(X, Y ) ∈ Rp × {0, 1}, the regression function m(x) reduces to

m(x) = E[Y |X = x] = P(Y = 1|X = x),

which is the conditional probability of observing class 1, given X = x. Given i.i.d. observations (i.e., our training
data) (x1, y1), . . . , (xn, yn) where (xi, yi) ∈ Rp × {0, 1}, i = 1, . . . , n, that have the same joint distribution as (X, Y )
we can use any nonparametric regression method to form an estimate m̂k(x) of m(x), and then define a plug-in
classifier via

Ĉk(x) =
{

1 if m̂k(x) ≥ 1
2 ,

0 if m̂k(x) < 1
2 .

As we show later, this estimates the optimal classification rule, called the Bayes classifier given by

CB(x) =
{

1 if m(x) ≥ 1
2 ,

0 if m(x) < 1
2 .

The plug-in estimator when we estimate m(x) using the kNN regression is called kNN classifier. Here the regression
estimate is

m̂k(x) = 1
k

∑
i∈Nk(x0)

yi, with yi ∈ {0, 1}.

So, Ĉk(x) = 1 is and only if more than half of the neighbors Nk(x) of x are of class 1. In other words, the classifier
votes based on the membership of the neighboring points to decide the predicted class.

To better study kNN classification, we use a data set shown in the following graph. To generate the data set, first
we generated 10 means µk from a bivariate normal distribution

N2((0, 1)>, I2),
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and label them BLUE (coded 0). Similarly, 10 more data points were generated and labeled ORANGE (coded 1).
Then, for each class we generated 100 observations. This is done by picking an µk at random with probability 1/10
and then generating 100 observations from

N2((0, 1)>, 0.2I2).
thus leading to a mixture of Gaussian clusters for each class. We have also generated a test data of size m = 200
from the same population that is shown below and will be used later for the comparison of the training and test
errors as functions of k.
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Figure 7: Simulated Training and Test data to bes used for kNN classification

One can easily observe that kNN regions are very irregular and respond to local clusters where one class is dominant.
Below we show the performance of kNN classifiers for different values of k. As you can see by increasing k the bias
of the classifier increases however the variance decreases with k.
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One can compare the performance of kNN classifiers with different values of k. For classification problems when
Y ∈ {0, 1} we measure the performance of a classifier using a 0-1 loss function rather than a squared error loss. In
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this case, the risk of a classifier C(X) is defined as P(Y 6= C(X)). For a given k, and after finding the corresponding
kNN classifier, for each (Xj , Yj) in the test data we first calculate Ŷj = Ĉk(Xj) and then estimate the test error as

Test Errork ≈
1
m

m∑
j=1

I(Ĉk(Xj) 6= Yj),

where m is the size of the test points.
There is a very famous result that shows the asymptotic probability of the 1-nearest neighbor classifier is no more
than twice the Bayes error (the best possible error). A proof of this will be provided later in a chapter pertinent to
classification.
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As P(Y = 1|X = x) = E[Y |X = x], one might also want to use a linear regression to first fit a line between Y and
X, say m̂L(x) and then use a classifier

ĈL(x) =
{

0 if m̂L(x) ≥ 1
2 ,

1 if m̂L(x) < 1
2 .
.

The following graph shows the decision boundary of a linear classifier on our training and test data sets.
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To this end, using a linear classifier, one can easily see that the mean squared error (Training Error) is given by 0.26
while the mean of the prediction error for an independent sample of size m = 200 is given by 0.27.

5 Bias-Variance Trade-off

In practice choosing the k in models we discussed in this section is very important. Consider a kNN regression problem
where Y = m(X) + ε with E(ε) = 0 and V ar(ε) = σ2. Using the training data points one obtains Ŷi = m̂(Xi) where

m̂k(Xi) = 1
k

∑
j∈Nk(Xi)

yj .

This results in a residual sum of squares SSE(k) =
∑n
i=1(Yi− Ŷi)2. It is easy to see that we can not use SSE on the

training data points to determine k since we would always pick k = 1 that results in SSE(1) = 0. Such a model is
unlikely to predict future data well at all. To choose k one need to be worried about the performance of the estimator
on new data points that have not been seen by the model and not been used to train the kNN estimator. To this
end, one needs to use expected prediction error (EPE) or simply test error to choose k. The expected prediction
error at x0 also known as test or generalization error is given by

EPE(x0) = E[(Y − m̂(x0))2|X = x0].

It is easy to see that, EPE(x0) can be decomposed as follow

EPE(x0) = E[(Y − m̂(x0))2|X = x0]
= σ2 + {Bias2(m̂k(x0)) + V arT (m̂k(x0))}

= σ2 +
(
m(x0)− 1

k

∑
j∈Nk(x0)

m(xj)
)2

+ σ2

k

Here there are three terms that are contributing to the generalization or test error at point x0:

1. σ2 which is irreducible error which is essentially the variance of the new test point. This is beyond our control
and is inevitable even if we knew the true m(·).

2. The Bias term that accounts for the squared difference between the true m(x0) and the expected value of the
estimate.

Bias(m̂k(x0)) = E[m̂k(x0)]−m(x0)

= 1
k

∑
j∈Nk(x0)

E[Yj ]−m(x0)

=
(

1
k

∑
j∈Nk(x0)

m(xj)
)
−m(x0)

This term most likely increases with k if the true m is smooth. For small k, and for lower dimensions, m(xj)
for those xj in the neighborhood of x0 will most likely be close to m(x0) and so on average the Bias will be
small. As k grows, the neighbors are further away from the target and their corresponding m values will be far
from m(x0) and the Bias will increase. Note that here we assume m is smooth, otherwise the above statements
could be wrong.

3. The variance is simply the variance of the average of k (i.i.d) points close to the target, which is σ2

k and it
decreases with k.

So, as we observe varying k will have effect on both the Bias and Variance and not the irreducible error. This is called
bias-variance trade-off in the literature and has an important role in selecting the right model for the underlying
problem of interest. Often as the complexity of the model grows, the bias decreases and the variance increases.
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However, complex models are often hard to understand and interpret. So, there is always a battle between model
complexity and its interpretability and this needs to be taken into account in practical situations.

Typically we would like to choose k (in general the complexity of our model) such that it provides a good trade-off
between the bias and variance by minimizing the test error. An obvious estimator of the test error is the training
error. Unfortunately, training error always underestimates the test error and does not account for the complexity
of the model. There are several ways to estimate the test error which we will discuss some of them in this course
including the famous cross validation technique.

Figure 8: Figure: Training Error Versus Test Error and the Bias-Variance Tradeoff (Source: Elements of Statistical
Learning)

Now, we look at the problem of bias-variance trade-off in a more general setting.

6 Reducible and Irreducible Error

Suppose we are given a training data set

T = {(xi, yi) ∈ Rp × R, i = 1, . . . , n},

and the ultimate goal is to estimate m(·) given in (2). Suppose we have an estimate of m given by m̂(·). Suppose
x and y is a new data point independent of our training sample T . We would like to find m̂(x) that is a good
estimate of the regression function m, hence predicting Y accurately. We define the expected prediction error of
predicting Y using m̂(X). A good m̂ will have a low expected prediction error.

EPE (Y, m̂(X)) = EX,Y,T

[
(Y − m̂(X))2

]
This expectation is over X, Y , and also T , as m̂ is actually random depending on the sampled data tau. Conditioning
on X = x, one can write

EPE (Y, m̂(x)) = EY |X,T
[
(Y − m̂(X))2 | X = x

]
= ET

[
(m(x)− m̂(x))2

]
︸ ︷︷ ︸

reducible error

+ σ2︸︷︷︸
irreducible error

.
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Note that the reducible error, is simply the mean squared error of estimating m(x) with m̂(x). The only thing
that is random here is T , the data that was used to obtain m̂.

MSE (m(x), m̂(x)) = ET
[
(m(x)− m̂(x))2

]
= (m(x)− E [m̂(x)])2︸ ︷︷ ︸

bias2(m̂(x))

+E
[
(m̂(x)− E [m̂(x)])2

]
︸ ︷︷ ︸

var(m̂(x))

.

Also, the irreducible error is the the variance of Y given that X = x, which is the noise that can not be learned
by the model itself, even if we knew the tru m, we will still have this error when we use m to predict the value of Y
at the point x.

In some situations we might be able to find m̂ which is unbiased, that is bias (m̂(x)) = 0, which also has low
variance. However, in many cases, this is not possible and there is always a bias-variance tradeoff. In many cases,
more complex models are less biased but they have large variances. On the other hand, simple modes are mostly
biased but they have a low variance. So, choosing the right complexity for the underlying model is a challenging
problem.

6.1 Simulation studies

Let us perform some simulation studies to understand the bias-variance trade-off, through simulation. Suppose we
would like to train a model to learn the true regression function function

m(x) = cos(10x) + 4x3 − 5x,

using training data that are generated from

y = m(x) + ε with ε ∼ N(0, 0.5).

We would like to predict Y given X = x, using obtained m̂(x). To this end, we first generate (training and test)
samples from the underlying model using the following code:

m = function(x) {
cos(10*x) + 4 *x^3 - 5*x

}

sim_data = function(m, sample_size = 80) {
x = runif(n = sample_size, min = 0, max = 1)
eps = rnorm(n = sample_size, mean = 0, sd = 0.5)
y = m(x) + eps
data.frame(x, y)

}

The scatter plot of our training data is given by

set.seed(1)
train_data <- sim_data(m, 80)
plot(train_data, col="darkgreen", main="Training Sample", pch=20)
curve(m, from=0, to =1, col="red", add=TRUE, lwd=2)
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We consider 4 polynomial models to estimate the underlying m:

m̂0(x) = β̂0

m̂1(x) = β̂0 + β̂1x

m̂2(x) = β̂0 + β̂1x+ β̂2x
2

m̂6(x) = β̂0 + β̂1x+ β̂2x
2 + . . .+ β̂6x

6

fit_0 = lm(y ~ 1, data = train_data)
fit_1 = lm(y ~ poly(x, degree = 1), data = train_data)
fit_2 = lm(y ~ poly(x, degree = 2), data = train_data)
fit_6 = lm(y ~ poly(x, degree = 6), data = train_data)

Plotting these four trained models, we see that the zero predictor model does very poorly. The first degree model is
reasonable, but we can see that the second degree model fits much better. The ninth degree model seem rather wild.
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Four Polynomial Models fit to a Simulated Dataset
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y ~ 1
y ~ poly(x, 1)
y ~ poly(x, 2)
y ~ poly(x, 6)
truth

As we see m̂0 is very biased but m̂6 seems to be less biases. Now, let us see, how variable these models are. To this
end, we generate 4 different data sets and fit these models. The following figure show the m̂0(x) and m̂6(x) fitted to
these data sets.
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These plots make it clear the difference between the bias and variance of these two models. As we observe m̂0 is
clearly biased but nearly the same for each of the data sets, since it has very low variance.
One the other hand m̂6 seem to be unbiased on average, however it is very variable as on each data set m̂6 results
in a very different fitted model.
To end up this chapter, we perform a simulation study to understand the relationship between the bias, variance,
and MSE for the estimates for m(x) given by these four models at the point x = 0.3.
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The above plot shows the predictions for each of the 350 simulations of each of the four models of different polynomial
degrees. The truth, m(x = 0.3) = -2.3819925, is given by the solid black horizontal line.
Two things are immediately clear:

• As complexity increases, bias decreases. (The mean of a model’s predictions is closer to the truth.)
• As complexity increases, variance increases. (The variance about the mean of a model’s predictions in-

creases.)

19


	What is Statistical Learning?
	Supervised, reinforcement and unsupervised learning
	Different methods for estimating a regression function
	kNN as a local averaging method for estimating a regression function
	kNN for Regression
	kNN regression is prone to curse of dimensionality
	kNN for classification

	Bias-Variance Trade-off
	Reducible and Irreducible Error
	Simulation studies


