
Workshop: Introduction to Statistical Learning, Part III- Classification

2021-01-24

Contents

1 Introduction: 1

2 Classification Problems 2

2.1 Bayes Classifier for a Binary Classification Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Bayes Classifier For Multiclass Classification Problems . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Why can’t we use the best (Bayes) classification rule? . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Classification with Regression Models 11

4 Linear Discriminant Analysis (LDA) 12

5 Quadratic discriminant analysis 13

6 On LDA computations 17

7 Reduced-rank linear discriminant analysis 22

8 Fisher’s Linear Discriminent Analysis (two class problem) 25

9 Logistic Regression For Classificastion 29

10 LDA versus logistic regression (Generative versus Discriminative Learning) 39

11 Multiclass Logistic Regression 41

12 Naive Bayes Classifier 43

12.1 Explaining Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

12.2 Naive Bayes Classification in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1 Introduction:

In Machine Learning we deal with different types of learning. Two major important classes of learning are called
Unsupervised and Supervised learning.

The main goals in unsupervised learning are
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1. Extract structure and postulate hypotheses about data generating process from observations X1, . . . ,Xn,
with Xi ∈ Rp.

2. Visualize, summarize and compress data.

These are called unsupervised learning because unlike supervised learning (below) there is no correct answers
and there is no teacher. Learning methods are left to their own devices to discover and present the interesting
structure in the data.

In supervised learning, in addition to the n observations of X, we also have a response variable Y ∈ Y. In this
approach different techniques are used for prediction Y given X. Important tools for this task are

1. Classification: when Y ∈ Y is categorical encoded by a discrete response, e.g., Y = {0, 1}, or Y =
{1, . . . ,K}.

2. Regression: when Y is a numerical value that is observed and Y = R.

In supervised learning, given training data (Xi, Yi), i = 1, . . . , n, the goal is to accurately predict the class or
response Y on a new observation of X = x. It is called supervised learning because the process of learning from
the training dataset can be thought of as a teacher supervising the learning process. We know the correct answers
for some of our observations (training data), the estimation (learning) method iteratively makes predictions on the
training data and is corrected by the teacher. Learning stops when the proposed method achieves an acceptable
level of performance.

In this chapter, that are mostly based on An Introduction to Statistical Learning with Applications in R (ISLR),
ESL II and the Machine learning course notes of Ryan Tibshirani, we learn about classification methods. Gen-
erally speaking, classification is the action of assigning an object to a category according to the characteristics of
the object. In other word, classification refers to the task of analyzing a set of pre-classified data objects to learn
a model (or a function) that can be used to classify an unseen data object into one of several predefined classes.
Classification has various applications, such as learning from a patient database to diagnose a disease based
on the symptoms of a patient, analyzing credit card transactions to identify fraudulent transactions, automatic
recognition of letters or digits based on handwriting samples, and distinguishing highly active compounds from
inactive ones based on the structures of compounds for drug discovery.

Before we start, let us again revisit some important differences between terminologies in Statistics and Machine
learning communities:

Statistics Machine Learning Meaning
Classification Supervised Learning Predicting a discrete response from covariates
Data Training sample A simple random sample
Covariates Features X’s
Classifier Hypothesis A map from feature space to the response space
Estimation Learning Finding a good classifier

2 Classification Problems

Classification, also known as discrimination, pattern classification, or pattern recognition, is a predictive task
in which the response takes values across discrete categories, and in the most fundamental case, two categories.
Classification is a supervised learning approach for which the true class labels for the data points are given in
the training data. Our task is to analyze a set of pre-classified data objects to learn a model (or a function) that
can be used to classify an unseen data object into one of several predefined classes.
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1. In automated handwriting digit recognition, Y is one of the ten digits from 0 to 9. There are also 256
covariates X1, . . . , X256 corresponding to the intensity value of the pixels in a say 16× 16 image. Training
data consists of samples of handwritten digits with their true lables.

Figure 1: Training samples used in a handwriting digit recognition problem

2. Iris Flower classification: This is a famous data set which consists of 50 samples from each of three species
of Iris flowers, Iris Setosa, Iris virginica, Iris Versicolor, see Figure 2. The length and width of the sepal
and petal are measured for each specimen, and the task is to predict the species of a new Iris flower based
on these features.

Figure 2: Three different species of the Iris data. Iris setosa (Left), Iris versicolor (Middle), and Iris virginica
(Right)

3. Image Classification: In this application, the task is assigning an input image one label from a fixed set
of categories. This is one of the core problems in Computer Vision that, despite its simplicity, has a large
variety of practical applications. Here, the input consists of a training data set consisting of n images,
each labeled with one of K different classes. Our task is to use the training set to learn what every one
of the classes looks like. We refer to this step as training a classifier, or learning a model. In the end, we
evaluate the quality of the classifier by asking it to predict labels for a new set of images that it has never
seen before. We will then compare the true labels of these images to the ones predicted by the classifier.
Intuitively, we’re hoping that a lot of the predictions match up with the true answers (which we call the
ground truth).
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Figure 3: An example training set for four visual categories. In practice, we may have thousands of categories
and hundreds of thousands of images for each category.

4. Predicting whether a patient will develop breast cancer or remain healthy, given genetic information.
5. Predicting whether or not a user will like a new product, based on his/her previous ratings.
6. Predicting the next elected president, based on various social, political, and historical measurements.

Similar to our usual setup, we observe a training data set consisting of pairs (Xi, Yi), i = 1, . . . , n, where Yi gives
the class of the ith observation, and Xi ∈ X ⊆ Rp are the measurements of p predictor variables. A classification
rule or classifier is a function h : X → {0, 1, . . . ,K − 1} where X is the domain of X. When we observe X = x,
we predict Y to be h(x) ∈ {0, 1, . . . ,K − 1}. For K = 2 we have a binary classification and for K > 2 we have a
multiclass classification problem.

Note that although the class labels may actually be Yi ∈ {healthy, sick} or Yi ∈ {cat, dog,mug, hat}, but we can
always encode them as Yi ∈ {0, 1, . . . ,K − 1} or Yi = {1, 2, . . . ,K} where K is the total number of classes.

Remark 1. There is a big difference between classification and clustering. In clustering there is not a pre-defined
notion of class membership (and sometimes, not even K), and we are not given labeled examples (Xi, Yi), but
only Xi, i = 1, . . . , n.

Intiutively, the classification rule h(·) creates a partition on the input space X . In other words, h(·) divides the
input space (feature space) into a collection of regions, each labeled by one class. Boundaries of these regions can
be rough or smooth, depending on the prediction function. For an important class of procedures these decision
boundaries are linear and this is what we mean with linear methods for classifications.

For a binary classifictaion, the classification rule is such that h : X → {0, 1}. This is a linear classification if there
exists a function H(x) = β0 + x>β such that h(x) = I(H(x) > 0). Here H(x) is called a linear discriminant
function. The decision boundary is the set

{x ∈ X ⊆ Rp : H(x) = 0},

which corrsponds to a (p− 1)-dimensional hyperplane within the p-dimensional input space X .

Suppose we make a prediction Ŷi(xi) = h(xi) ∈ Y based on the observation Xi = xi. We can use a loss function

L : Y × Y → R+,

to formalize the quality of the prediction. A typical loss function is
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Figure 4: Top 10 significant CpG’s for each breast cancer subtype

L(yi, ŷi) =
{

0 yi = ŷi,

1 yi 6= ŷi.

The classification risk or the risk function R of a learner (classifier) Ŷ (x) = h(x) is given by the expected loss

R(h) = E[L(Y, h(X))] = P(Y 6= h(X)),

where the expectation is with respect to the true (unknown) joint distribution of X. The risk is unknown, but
we can estimate it using the empirical classification error (traning error) rate as

Rn(h) = 1
n

n∑
i=1

L(yi, h(xi))

= 1
n

n∑
i=1

I(yi 6= h(xi)).

The training (classification) error rate is the proportioan oftraining observations that are misclassified by our
proposed classifier. For a binary classification, let Y.hat be a 0-1 vector of the predicted class labels, and y be a
0-1 vector of the observed class labels. We can calculate the classification error rate by mean(abs(Y.hat-y)) in
R.
Test error is a much better gauge of how well classifier h generalizes to new data. The test error is in general
larger than the training error and it is the error rate associated with a classifier on a new data set that has never
been seen by the classifier before.
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Figure 5: Linear versus non-linear boundaries in Iris flowers classification problem

Remark 2. Re-coding the loss: If we code Y as Y ∈ {−1, 1}, then many classifiers can be written as

h(x) = sign{H(x)},

for some H. For linear classifiers H(x) = β0 + x>β and the 0-1 loss function can be written as

I(Y 6= h(X)) = I(Y H(X) < 0),

and the risk is
R(h) = P(Y 6= h(X)) = P(Y H(X) < 0)).

This is an important remrak which will be used later on when we talk about AdaBoost and SVM approaches for
classification.

2.1 Bayes Classifier for a Binary Classification Problem

If we knew the joint distribution of (X, Y ), then we could easily find the optimal classifier.

Theorem 1. For a binary classification, the rule h : Sx −→ {0, 1} that minimizes R(h) is given by

h∗(x) =
{

1 if m(x) > 1
2 ,

0 otherwise,

where m(x) = E[Y |X = x] = P(Y = 1|X = x). The rule h∗(·) is called the Bayes rule. The risk R(h∗) of the
Bayes rule is called the Bayes risk. The set {x ∈ X : m(x) = 1

2} is called the Bayes decision boundary.

To show the result in Theorem 1, one needs to verify that R(h∗) ≤ R(h) for any classifier h 6= h∗. To this end,
observe that
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R(h) = P({Y 6= h(X)})
= EY,X[I{Y 6= h(X)}]

= EX

[
EY |X[I{Y 6= h(X)}|X]

]
=
∫

P(Y 6= h(x)|X = x)dPX(x).

So, it is enough to show that

P(Y 6= h(x)|X = x)− P(Y 6= h∗(x)|X = x) ≥ 0, for all x ∈ X .
First note that

P(Y 6= h(x)|X = x) = 1− P(Y = h(x)|X = x)

= 1−
(
P(Y = 1, h(X) = 1|X = x) + P(Y = 0, h(X) = 0|X = x)

)
= 1−

(
h(x)P(Y = 1|X = x) + (1− h(x))P(Y = 0|X = x)

)
= 1−

(
h(x)m(x) + (1− h(x))(1−m(x))

)
.

Hence

P(Y 6= h(x)|X = x)− P(Y 6= h∗(x)|X = x) = (2m(x)− 1)(h∗(x)− h(x))

= 2(m(x)− 1
2)(h∗(x)− h(x)).

When m(x) ≥ 1
2 we have h∗(x) = 1 and since h(x) ≤ 1 the above expression is non-negative. When m(x) < 1

2 ,
we have h∗(x) = 0, then the above expression is again non-negative as h(x) ≥ 0, and this completes the proof.

One can write the Bayes classifier h∗(X) in different ways. From the Bayes’ theorem, we have

m(x) = P(Y = 1|X = x)

= p(x|Y = 1)P(Y = 1)
p(x|Y = 1)P(Y = 1) + p(x|Y = 0)P(Y = 0)

= π1f1(x)
π1f1(x) + π0f0(x)

where π1 = P(Y = 1), π0 = 1 − π1 and fj(x) = p(x|Y = j) is the conditional distribution of X given Y = j,
j = 0, 1. It can be verified that

m(x) > 1
2 is equivalent to f1(x)

f0(x) >
π0
π1
,

and so

h∗(x) =

1 if f1(x)
f0(x) >

π0
π1
,

0, otherwise.
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Equivalently,

m(x) > 1
2 is equivalent to π1f1(x) > π0f0(x).

In other words,

h∗j (x) = argmax
j∈{0,1}

{
πjfj(x)

}
=
{

1 if π1f1(x) > π0f0(x),
0 otherwise.

Also, the decision boundary of the Bayes rule is

D = {x ∈ SX : π1f1(x) = π0f0(x)}.

Example 1: Suppose X0 ∼ N(1, 1) and X1 ∼ N(−1, 1) represent the distributions of a feature X in two sub-
populations encoded by Y ∈ Y = {0, 1} and assume that π1 = π0 = 1

2 . Using the Bayes rule for classification,
h(x) = 1 if π1f1(x) > π0f0(x). After pluging in the densities and since π0 = π1 = 1/2, one can easily observe
that h(x) = 1 if

(x+ 1)2 < (x− 1)2 =⇒ x < 0.
In other words, the Bayes classifier is given by

h∗(x) =
{

1 if x < 0,
0 if x ≥ 0.

It is also interesting to calculate the true error rate associated with the Bayes classifier. In other word, the
minimum error rate possible in this classification problem. To this end, we have

R(h∗) = P(h∗(X) 6= Y )
= P(X < 0|Y = 0)P(Y = 0) + P(X ≥ 0|Y = 1)P(Y = 1)

= 1
2(P(Z < −1) + P(Z > 1))

= Φ(−1) = 0.159.

This is the classification error associated with the optimum classifier under the 0-1 loss function.

par(mfrow=c(1, 2), pty="s")
x<-seq(-4, 4, by=0.01)
plot(x, dnorm(x, -1, 1), type="l", lwd=2, ylab="Component Densities", col="red")
curve(dnorm(x, 1, 1), add=T, col="blue")
abline(v=0, col="grey", lwd=2)
plot(x, 0.5*(dnorm(x, -1, 1)+ dnorm(x, 1, 1)), lwd=2, ylab="Density", type="l")
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Example 2: Suppose X0 ∼ N(1, 1/3) and X1 ∼ N(−1, 1) represent the distributions of a feature X in two
sub-populations encoded by Y ∈ Y = {0, 1} and let π1 = π0 = 1

2 . Using the Bayes classifier, we have h∗(x) = 1 if
π1f1(x) > π0f0(x). After pluging in the densities and since π1 = π0 = 1/2, one can easily observe that h∗(x) = 1
if

e−
(x+1)2

2 >
√

3e−
3(x−1)2

2 =⇒ e
3(x−1)2

2 − (x+1)2
2 >

√
3

=⇒ ex
2−4x+1 >

√
3

=⇒ x2 − 4x+ 1− 1
2 log 3 > 0

=⇒ x < 0.116 or x > 3.884,

we get

h∗(x) =
{

1 if x < 0.116 or x > 3.884,
0 if x ∈ [0.116, 3.884].

Again, one can simply calculate the error rate associated with the Bayes classifier, which is given by

R(h∗) = P(h∗(X) 6= Y )

= 1
2{P(X < 0.116|µ = 1) + P(X ≥ 3.884|µ = 1)}+ 1

2P(0.116 < X < 3.884|µ = −1)

= 0.1613.

par(mfrow=c(1, 3), pty="s")
x<-seq(-4, 4, by=0.01)
plot(x, dnorm(x, -1, 1), type="l", lwd=2, ylab="Component Densities",

col="red", ylim=c(0, 0.8))
curve(dnorm(x, 1, sqrt(1/3)), add=T, col="blue")
abline(v=0.116, col="grey", lwd=2)
abline(v=3.884, col="grey", lwd=2)

x<-seq(-4, 4, by=0.01)
plot(x, log(dnorm(x, -1, 1)), type="l", lwd=2, ylab="Log Component Densities",

col="red", ylim=c(-15, 1))
curve(log(dnorm(x, 1, sqrt(1/3))), add=T, col="blue")
abline(v=3.884, col="grey", lwd=2)
abline(v=0.116, col="grey", lwd=2)

plot(x, 0.5*(dnorm(x, -1, 1)+ dnorm(x, 1, sqrt(1/3))), lwd=2, ylab="Density", type="l")
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2.2 Bayes Classifier For Multiclass Classification Problems

We now consider the case where Y takes on more than two values, that is, Y ∈ {0, 1, . . . ,K − 1} for K > 2.

Theorem 2. Let R(h) = P(h(X) 6= Y ) be the classification error of a classification rule h(x). The Bayes rule
h∗(X) minimizing R(h) can be written as

h∗(x) = argmax
j∈{0,1,...,K−1}

P(Y = j|X = x).

To show this result, one can easily see that

R(h) = 1− P(h(X) = Y )

= 1−
K−1∑
j=0

P(h(X) = j, Y = j)

= 1−
K−1∑
j=0

EY,X
[
I(h(X) = j, Y = j)

]

= 1−
K−1∑
j=0

EY |X
[
I(h(X) = j)P(Y = j|X)

]
.

Now, it is straighforward to see that

h∗(x) = argmax
j∈{0,1,...,K−1}

P(Y = j|X = x)

achieves the minimum R(h) and the associated minimum is

1− E[max
j

P(Y = j|X)].

2.3 Why can’t we use the best (Bayes) classification rule?

Firts, note that similar to the Binary classification, the multiclass best (Bayes) classifier h∗(x) =
argmax

j=0,1,...,K−1
P(Y = j|X = x) can be written as

h∗(x) = argmax
j∈{0,1,...,K−1}

P(Y = j|X = x)

= argmax
j∈{0,1,...,K−1}

{
πjfj(x)
f(x)

}
= argmax

j∈{0,1,...,K−1}
{πjfj(x)} ,

where f(x) = ∑K−1
k=0 πkfk(x) is the marginal distribution of x. Unfortunately, the best classifier depends on

unknon quantities. If we can estimate πj and fj then we can calculate the Bayes classification rule. Estimating
πj is easy but the more difficult problem is estimating fj . So, in terms of ability to classify, having fj(x) is
almost equivalent to having P(Y = j|X = x). In general we need to use data to find some approximation to the
Bayes rule. This can be done using different parametric and non-parametric approaches, each leading to different
classification methods. Many classification techniques are based on using either models for the class densities or
directly estimating P(Y = j|X = x). For example,
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• Linear and Quadratic discriminant analysis (LDA and QDA) use Gaussian densities for the conditional
class densities fj(x), j = 1, . . . ,K − 1.

• Mixture of normal densities are used for fj(x) to allow for nonlinear decision boundaries.
• General nonparametric density estimation approach can be used to estimate the class conditional densities.
• Naive Bayes methods are a variant of the previous case, and assume that each of the class densities are

products of marginal densities; that is, they assume that inputs are conditionally independent in each class.
• Logistic regression tries to estimate P(Y = j|X = x) directly and using training data.

At the risk of oversimplifying, there are three main stradegies:

1. Empirical Risk Minimization (ERM): In this approach one chooses a set of classifers H and find ĥ ∈ H that
minimizes some estimators of R(h). Thus the learning algorithm defined by the ERM principle consists in
solving some kind of optimization problem. If we do not restrict ourselves into H one can always overfit
the data by finidng a classifier with ERM=0. This approach lays down its theorey on PAC (Probably
Approximately Correct) learnability and under 0-1 loss function is known as an NP-hard problem.

2. Density estimation: In this approach we estimate P(Y = j|X = x) by first nothing that

mj(x) = P(Y = j|X = x) = πjfj(x)
f(x) .

Let f̂j(x) be an estimat of fj from the X′i for which Y = j and π̂j = #{Yi=j}
n . Then, we estimate mj(x) by

m̂j(x) = P̂(Y = j|X = x) = π̂j f̂j(x)
f̂(x)

,

and use this for classification. One can of course proceed differently as follow:

• Parametric density estimation: Where we assume a parametric model for data in each class (e.g.,
LDA, QDA, . . . ).

• Nonparametric density estimation: Where we use kernel desnity estimation or other nonparametric
methods to estimate fj ’s (e.g., Tree based methods, Naive Bayes, . . . ).

3. Regression: In this approach one can estimate P(Y = j|X = x) using regression models such as logistic
regression, or more advanced methods.

3 Classification with Regression Models

For a binary classifier problem, given X we only need to predict its class label Y = 0 or Y = 1. This is in contrast
to a regression problem where we need to predict a real-valued response Y ∈ R. Intutively, classification is a
much easier task than regression. Let m∗(x) = E(Y |X = x) be the true regression function and let h∗(x) be the
corresponding Bayes rule. Suppose m̂(x) is an estimate of m∗(x) and define the plug-in classification rule

ĥ(x) =
{

1, if m̂(x) > 1
2 ,

0, Otherwise.

We have the following theorem:

Theorem 3. The risk of the plug-in classifier ĥ satisfies

R(ĥ)−R(h∗) ≤ 2
√∫

(m̂(x)−m∗(x))2dPX(x). (1)
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In other words, if the regression estimate m̂(x) is close to m∗(x) then the plug-in classification risk will be close
to the Bayes risk. The converse in not necessarily true. It is possible for m̂ to be far from m∗ and still lead to a
good classifier. As long as m̂(x) and m∗(x) are on the same side of 1

2 they yeild the same classifier.

To show this result, we use the following observation from Theorem 3 that

P(Y 6= ĥ(X)|X = x)− P(Y 6= h∗(X)|X = x) = (2m̂(x)− 1)(h∗(x)− ĥ(x))

= 2|m̂(x)− 1
2 |I(h∗(x) 6= ĥ(x)).

When h∗(x) 6= ĥ(x), there are two possible cases: (i) ĥ(x) = 1 and h∗(x) = 0; (ii) ĥ(x) = 0 and h∗(x) = 1. In
both cases we have

|m̂(x)−m∗(x)| > |m̂(x)− 1
2 |.

Therefore,

P(ĥ(X) 6= Y )− P(h∗(X) 6= Y ) = 2
∫
|m̂(x)− 1

2 |I(h∗(x) 6= ĥ(x))dPX(x)

≤ 2
∫
|m̂(x)−m∗(x)|I(h∗(x) 6= ĥ(x))dPX(x)

≤ 2
∫
|m̂(x)−m∗(x)|dPX(x)

≤ 2
√∫

(m̂(x)−m∗(x))2dPX(x).

4 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis assumes multivariate normal distributions for data within each class. In this
approach it is assumed that each class have its own mean µj ∈ Rp, but they all have a common covariance
matrix Σ ∈ Rp×p. As we show below, when we calculate the classifier rule, equal covariance matrices cause the
normalization factors, as well as the quadratic part in the exponents, to be independent of j. This also implies
that the decision boundaries between class k and j become linear in x; in p-dimension a hyperplane. In LDA
one assumes that

fj(x) = P(X = x|Y = j) = Np(µj ,Σ),

with the following pdf
fj(x) = 1

(2π)p/2|Σ|1/2
exp

{
−1

2(x− µj)>Σ−1(x− µj)
}
.

Now, the goal is to find j so that P(Y = j|X = x) · πj ∝ fj(x) · πj is the largest. Since log(·) is a monotone
function, we can consider maximizing log(πj · fj(x)) over j = 1, . . . ,K. We can define LDA rule as
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fLDA(x) = argmax
j=1,...,K

{log(πj · fj(x))}

= argmax
j=1,...,K

{
log

[
πj

(2π)p/2|Σ|1/2
exp

{
−1

2(x− µj)>Σ−1(x− µj)
}]}

= argmax
j=1,...,K

{
−1

2(x− µj)>Σ−1(x− µj) + log(πj)
}

= argmax
j=1,...,K

{
x>Σ−1µj −

1
2x>Σ−1x− 1

2µ
>
j Σ−1µj + log(πj)

}
= argmax

j=1,...,K

{
µ>j Σ−1x− 1

2µ
>
j Σ−1µj + log(πj)

}
= argmax

j=1,...,K
δj(x).

We call δj(x), j = 1, . . . ,K the discriminant functions. Note that

δj(x) = µ>j Σ−1x− 1
2µ
>
j Σ−1µj + log(πj) = aj + b>j x,

is just an affine function of x, where aj = −1
2µ
>
j Σ−1µj + log(πj) and b>j = µ>j Σ−1.

In practice we do not know the parameters of the Gaussian distributions, and we will estimate them using a
training sample x1, . . . ,xn and yi ∈ {1, . . . ,K}, i = 1, . . . , n. To this end we use

1. π̂j = nj
n , the sample proportion of observations in class j.

2. µ̂j = 1
nj

∑
yi=j xi, as the mean of feature values for observations in class j.

3. Σ̂ = 1
n−K

∑K
j=1

∑
yi=j(xi − µ̂j)(xi − µ̂j)

>, as the pooled sample covariance matrix.

This gives estimated discriminant functions:

δ̂j(x) = µ̂>j Σ̂−1x− 1
2 µ̂
>
j Σ̂−1µ̂j + log(π̂j) = âj + b̂>j x,

and the LDA rule reduces to
ĥLDA(x) = argmax

j=1,...,K
δ̂j(x).

5 Quadratic discriminant analysis

If Σj , j = 1, . . . ,K are not assumed to be equal, then the convenient cancellations in our derivations of LDA
do not occur. This results in the quadratic pieces in x end up remaining leading to a quadratic discriminant
functions (QDA). QDA is similar to LDA except a covariance matrix must be estimated for each class j. We get
the quadratic discriminant functions as

δj(x) = −1
2 log |Σj | −

1
2(x− µj)>Σ−1(x− µj) + log πj .

The decision boundary between each pairs of classes k and l is described by a quadratic equation

{x ∈ Rp : δj(x) = δk(x)}.

It is important to note that LDA & QDA have assumptions that are often restrictive:
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1. Both LDA and QDA assume the the predictor variables X are drawn from a multivariate Gaussian distri-
bution.

2. LDA assumes equality of covariances among the predictor variables X across all levels of Y . This assumption
is relaxed with the QDA model.

3. LDA and QDA require the number of predictor variables (p) to be less then the sample size (n). Further-
more, its important to keep in mind that performance will severely decline as p approaches n. A simple
rule of thumb is to use LDA & QDA on data sets where n ≥ 5× p.

Also, when considering between LDA & QDA it is important to know that LDA is a much less flexible classifier
than QDA, and so has substantially lower variance. This can potentially lead to improved prediction performance.
But there is a trade-off: if LDA’s assumption that the the predictor variable share a common variance across
each Y response class is badly off, then LDA can suffer from high bias. Roughly speaking, LDA tends to be
a better bet than QDA if there are relatively few training observations and so reducing variance is crucial. In
contrast, QDA is recommended if the training set is very large, so that the variance of the classifier is not a
major concern, or if the assumption of a common covariance matrix is clearly untenable.

Example (IRIS Data): Here we consider Iris data set which perhaps is the best known database in the pattern
recognition literature. The data set contains 3 classes of 50 instances each, where each class refers to a type of
iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other.
Predicted attribute is the class of iris plant. Data set includes the following variables:

1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. class: – Iris Setosa – Iris Versicolour – Iris Virginica

data(iris)
str(iris)

## ’data.frame’: 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

ct<-rep(1:3, each=50)
pairs(iris[,1:4], col=ct)
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We we only use the width and length as feature values to predict class type of iris plants. We use both LDA and
QDA approaches. We also report prediction errors based on LDA and QDA methods:

## save class labels
library(MASS)
iris.feature <- iris[,3:4]

iris.lda <- lda(iris.feature,grouping=ct)
##create a grid for our plotting surface
x <- seq(-1,10,0.01)
y <- seq(-1,7,0.01)
z <- as.matrix(expand.grid(x,y),0)
m <- length(x)
n <- length(y)
##classes are 1,2 and 3, so set contours at 1.5 and 2.5

par(mfrow=c(1, 2), pty="s")

plot(iris.feature,col=ct+1,pch=20,cex=1,cex.lab=1)
iris.ldp <- predict(iris.lda,z)$class

## Warning in predict.lda(iris.lda, z): variable names in ’newdata’ do not match
## those in ’object’

contour(x,y,matrix(iris.ldp,m,n),
levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=1, lwd=2)

iris.qda <- qda(iris.feature,grouping=ct)
plot(iris.feature,col=ct+1,pch=20,cex=1,cex.lab=1)
iris.qdp <- predict(iris.qda,z)$class
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## Warning in predict.qda(iris.qda, z): variable names in ’newdata’ do not match
## those in ’object’

contour(x,y,matrix(iris.qdp,m,n),
levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=1, lwd=2)
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ct.l<- table(predict(iris.lda, grouping=ct)$class, ct)
ct.l

## ct
## 1 2 3
## 1 50 0 0
## 2 0 48 4
## 3 0 2 46

error.rate.1<-sum(sum(ct.l[row(ct.l)!=col(ct.l)]))/length(ct)
error.rate.1

## [1] 0.04

ct.q<- table(predict(iris.qda, grouping=ct)$class, ct)
ct.q

## ct
## 1 2 3
## 1 50 0 0
## 2 0 49 2
## 3 0 1 48

error.rate.q<-sum(sum(ct.q[row(ct.q)!=col(ct.q)]))/length(ct)
error.rate.q

## [1] 0.02
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6 On LDA computations

The decision boundaries for LDA are useful for graphical purposes, but to classify a new point x0 ∈ Rp we do not
use them. To do this, we simply compute δ̂j(x0) for each j = 1, . . . ,K. LDA works very well in many practical
applications even when compared with fancy alternative classification schemes.

As we showed earlier, LDA equivalently minimizes over j = 1, . . . ,K,

1
2(x− µ̂j)>Σ̂−1(x− µ̂i)− log π̂j .

In practice, it often helps to factorize Σ̂ using eigen-decomposition technique and rewrite it as

Σ̂ = UDU>,

where U ∈ Rp×p has orthogonal columns (and rows) and D = diag(d1, . . . , dp) with dj ≥ 0 for each j. Note that
under this decomposition,

D−1 = diag(1/d1, . . . , 1/dp) and D−
1
2 = diag(1/

√
d1, . . . , 1/

√
dp).

We also have Σ̂−1 = UD−1U>, D− 1
2D−

1
2 = D−1, and

UD−1U>UDU> = UD−1DU> = UU> = I.

So,

1
2(x− µ̂j)>Σ̂−1(x− µ̂i)− log π̂j = 1

2[U>(x− µ̂j)]>D−1[U>(x− µ̂j)]− log π̂j

= 1
2[D−

1
2U>(x− µ̂j)]>[D−

1
2U>(x− µ̂j)]− log π̂j

= 1
2 ||D

− 1
2U>x−D−

1
2U>µ̂j ||22 − log π̂j

= 1
2 ||x̃− µ̃j ||

2 − log π̂j ,

which is essentially squared distance between x̃ (transformed x) and µ̃j (transformed µ̂j) adjusted by log π̂j .
This being said, LDA procedure can be described as

1. Compute the sample estimates π̂j , µ̂j and Σ̂.

2. Factor Σ̂ as Σ̂ = UDU>.

3. Transform the class centroids to µ̃j = D−
1
2U>µ̂j .

4. Given any point x ∈ Rp, transform the point to x̃ = D−
1
2U>x ∈ Rp.

5. Classify according the nearest centroid in the transformed space after adjusting for class proportion, that
is classify to class j for which

1
2 ||x̃− µ̃j ||

2 − log π̂j

is the smallest.
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Transformation xi → x̃i = D−
1
2U>xi is called sphering the data points. This is because if we think of x ∈ Rp as

a random variable with covariance matrix Σ̂, then

Cov(x̃i) = Cov(D−
1
2U>xi) = D−

1
2U>Σ̂UD−

1
2 = I.

Now, what LDA is doing is comparing 1
2 ||x̃ − µ̃j ||

2 − log π̂j across the classes j = 1, . . . ,K. Consider the affine
subspaceM ⊂ Rp spanned by the transformed centroids µ̃1, . . . , µ̃K , which has dimension K−1. For any x ∈ Rp,
we can decompose x̃ as

x̃ = Projectx̃M + Projectx̃M⊥ ,

so,

||x̃− µ̃j ||2 = ||Projectx̃M − µ̃j + Projectx̃M⊥ ||
2

= ||Projectx̃M − µ̃j ||2 + ||Projectx̃M⊥ ||
2.

Note that the second term does not depend on j. In other words, the LDA classification rule does not change
if we project the points to be classified onto M , since the distances orthogonal to M do not matter. So, LDA
procedure can be seen as follow:

1. Compute the sample estimates π̂j , µ̂j and Σ̂.

2. Sphere the data points based on factoring Σ̂ using eigen-decomposition.

3. Project down data points to the affine subspace spanned by the sphere centroids. This can all be summarized
by a single linear transformation A ∈ R(K−1)×p.

4. Given any point x ∈ Rp, transform to x̃ = Ax ∈ RK−1 and classify according to the class j for which
1
2 ||x̃− µ̃j ||

2 − log π̂j

is smallest, where µ̃j = Aµ̂j with A = D−
1
2U>.

This way of describing LDA might look complicated, but actually it is much simpler. After applying A we reduce
the problem from p dimension to K− 1 dimensions, this is basically nearest centroid classification, with a simple
modification to adjust for class proportions:

ĥLDA(x) = argmin
j=1,...,K

{1
2 ||x̃− µ̃j ||

2 − log π̂j
}
.

In R the matrix A> is exactly what is returned by the scaling component from the lda function in the MASS
package.
Example (Olive Oil Data Set) The data set that we analyze here is the data on the percentage composition
of eight fatty acids found by lipid fraction of 572 Italian olive oils. The data come from three regions: Southern
Italy, Sardinia, and Northern Italy. Within each region there are a number of different areas. Southern Italy
comprises North Apulia, Calabria, South Apulia, and Sicily. Sardinia is divided into Inland Sardinia and Costal
Sardinia. Northern Italy comprises Umbria, East Liguria, and West Liguria. The olive oil data set is a data
frame with 572 observations and 10 columns. The first column gives the region: (1) Southern Italy, (2) Sardinia,
or (3) Northern Italy. The second column gives the area: (1) North Apulia, (2) Calabria, (3) South Apulia, (4)
Sicily, (5) Inland Sardinia, (6) Costal Sardinia, (7) East Liguria, (8) West Liguria, and (9) Umbria. The other
p = 8 columns are observations on variables measuring the percentage composition of 8 different fatty acids.
Using the sphering approach, these data can be transformed to data points Axi ∈ R2, i = 1, . . . , 572. Here M is
a 2-dimensional subspace, since there are K = 3 classes and the transformation has dimension A ∈ R2×8. Let us
first look at the data set, which can be found in the package classifly in R.
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library(classifly)
data(olives)
str(olives)

## ’data.frame’: 572 obs. of 10 variables:
## $ Region : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Area : Factor w/ 9 levels "Calabria","Coast-Sardinia",..: 5 5 5 5 5 5 5 5 5 5 ...
## $ palmitic : int 1075 1088 911 966 1051 911 922 1100 1082 1037 ...
## $ palmitoleic: int 75 73 54 57 67 49 66 61 60 55 ...
## $ stearic : int 226 224 246 240 259 268 264 235 239 213 ...
## $ oleic : int 7823 7709 8113 7952 7771 7924 7990 7728 7745 7944 ...
## $ linoleic : int 672 781 549 619 672 678 618 734 709 633 ...
## $ linolenic : int 36 31 31 50 50 51 49 39 46 26 ...
## $ arachidic : int 60 61 63 78 80 70 56 64 83 52 ...
## $ eicosenoic : int 29 29 29 35 46 44 29 35 33 30 ...

head(olives)

## Region Area palmitic palmitoleic stearic oleic linoleic linolenic
## 1 1 North-Apulia 1075 75 226 7823 672 36
## 2 1 North-Apulia 1088 73 224 7709 781 31
## 3 1 North-Apulia 911 54 246 8113 549 31
## 4 1 North-Apulia 966 57 240 7952 619 50
## 5 1 North-Apulia 1051 67 259 7771 672 50
## 6 1 North-Apulia 911 49 268 7924 678 51
## arachidic eicosenoic
## 1 60 29
## 2 61 29
## 3 63 29
## 4 78 35
## 5 80 46
## 6 70 44

As we showed earlier, working in the transformed space makes it easier to draw boundaries. Now the decision
boundary between class j and k is the set of say z ∈ RK−1 such that

1
2 ||z− µ̃j ||

2 − log π̂j = 1
2 ||z− µ̃k||

2 − log π̂k.

By simple calculations, this can be simplified to A>z = B as follow

(µ̃j − µ̃i)>z = log π̂k
π̂j

+ 1
2(||µ̃j ||2 − ||µ̃k||2).

As an example, when K = 3, so that z ∈ R2, this is just the line given by z2 = a+ bz1, where

a =
log π̂k

π̂j
+ 1

2(||µ̃j ||2 − ||µ̃k||2)
µ̃j2 − µ̃k2

,

and
b = µ̃k1 − µ̃j1

µ̃j2 − µ̃k2
.

Using this approach in our Olive Oil data set we can reduce the problem to only looking at 2, rather than 8
dimensions. Plus, now the decision boundaries are pretty easy to draw, because it’s essentially nearest centroid
classification as described earlier.
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par(mfrow=c(1, 2))
y = as.numeric(olives[,1])
x = as.matrix(olives[,3:10])

n = nrow(x)
p = ncol(x)

pi = numeric(3)
mu = matrix(0,3,8)

for (j in 1:3) {
pi[j] = sum(y==j)/n
mu[j,] = colMeans(x[y==j,])

}

Sigma = matrix(0,p,p)
for (j in 1:3) {

A = scale(x[y==j,],center=T,scale=F)
Sigma = Sigma + t(A)%*%A

}
Sigma = Sigma/(n-3)
Sigmainv = solve(Sigma)

lda.classify = function(x0, pi, mu, Sigmainv) {
K = length(pi)
delta = numeric(K)
for (j in 1:K) {

delta[j] = t(x0) %*% Sigmainv %*% mu[j,] -
0.5 * t(mu[j,]) %*% Sigmainv %*% mu[j,] + log(pi[j])

}
return(which.max(delta))

}

yhat = numeric(n)
for (i in 1:n) {

yhat[i] = lda.classify(x[i,],pi,mu,Sigmainv)
}

# Training errors
sum(yhat!=y)

## [1] 5

a = lda(x,y)

at = a$scaling # In terms of lecture notation, this is A^T
z = x %*% at

cols = c("red","darkgreen","blue")
plot(z,col=cols[y])
legend("bottomleft",pch=21,col=cols,
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legend=c("Region 1","Region 2","Region 3"))

mu = a$means %*% at
pi = a$prior

points(mu,col=cols,pch=19,cex=2)
points(mu,pch=21,cex=2)

getab = function(j,k,mu,pi) {
b = (mu[k,1]-mu[j,1])/(mu[j,2]-mu[k,2])
normj = sum(mu[j,]^2)
normk = sum(mu[k,]^2)
a = (log(pi[k]/pi[j]) + 0.5*(normj-normk))/(mu[j,2]-mu[k,2])
return(list(a=a,b=b))

}

# 1 and 2
ab12 = getab(1,2,mu,pi)
abline(a=ab12$a,b=ab12$b,lty=1)

# 1 and 3
ab13 = getab(1,3,mu,pi)
abline(a=ab13$a,b=ab13$b,lty=2)

# 2 and 3
ab23 = getab(2,3,mu,pi)
abline(a=ab23$a,b=ab23$b,lty=3)

## Find points of intersection
zx = (ab12$a-ab13$a)/(ab13$b-ab12$b)
zy = ab12$a + ab12$b*zx

# Now redraw with the appropriate boundaries
plot(z,col=cols[y])
legend("bottomleft",pch=21,col=cols,

legend=c("Region 1","Region 2","Region 3"))
points(mu,col=cols,pch=19,cex=2)
points(mu,pch=21,cex=2)

segments(zx,zy,-15,ab12$a+ab12$b*(-15))
segments(zx,zy,-7,ab23$a+ab23$b*(-7))
segments(zx,zy,-15,ab13$a+ab13$b*(-15))
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7 Reduced-rank linear discriminant analysis

The dimension reduction from p to K−1 that we studied in the last section was exact, in that we did not change
the LDA rule at all. In practice K might still be large and visualizing decision boundaries might not be possible.
In such situations one might want to reduce further to a dimension say L < K−1, when K is large. Reduced-rank
linear discriminant analysis (RRLDA) is a nice way to project down to lower than K − 1 dimensions. It chooses
a lower dimensional subspace so as to spread out the centroids as much as possible. The approach is similar to
the principal component analysis. The reduced dimensions in RRLDA approach are computed by looking at the
principal components directions of the matrix of transformed centroids.
Example (Crab data):
The crabs data frame has 200 rows and 8 columns, describing 5 morphological measurements on 50 crabs each of
two color forms and both sexes, of the species Leptograpsus variegatus collected at Fremantle, W. Australia. We
first create 4 classes of crabs using Speices (B=Blue, O=Orange) and Sex (F=Female, M=Male) to get classes
BM, OM, BF, OF. Then we perform LDA and QDA on our data set for classifications.

library(MASS)
data(crabs)
head(crabs)

## sp sex index FL RW CL CW BD
## 1 B M 1 8.1 6.7 16.1 19.0 7.0
## 2 B M 2 8.8 7.7 18.1 20.8 7.4
## 3 B M 3 9.2 7.8 19.0 22.4 7.7
## 4 B M 4 9.6 7.9 20.1 23.1 8.2
## 5 B M 5 9.8 8.0 20.3 23.0 8.2
## 6 B M 6 10.8 9.0 23.0 26.5 9.8

par(mfrow=c(1, 2))

zz<-as.factor(paste(crabs[,1], crabs[,2], sep=""))

22



ct<-as.numeric(zz)

crab.lda<-lda(crabs[, 4:8], grouping=ct)
crab.ldp<-predict(crab.lda)
plot(crab.ldp$x, col=ct+1, pch=ct)

x <- seq(-10,10,0.02)
y <- seq(-10,10,0.02)
z <- as.matrix(expand.grid(x,y,0))
m <- length(x)
n <- length(y)

cb.ldap <- lda(crab.ldp$x,ct)
cb.ldpp <- predict(cb.ldap,z)$class

## Warning in predict.lda(cb.ldap, z): variable names in ’newdata’ do not match
## those in ’object’

contour(x,y,matrix(cb.ldpp,m,n), levels=c(1.5,2.5, 3.5),
add=TRUE,d=FALSE,lty=1,lwd=2)

crab.qda<-qda(crabs[, 4:8], grouping=ct)
crab.qdp<-predict(crab.qda)
plot(crab.ldp$x, col=ct+1, pch=ct+1)

cb.qdap <- qda(crab.ldp$x,ct)
cb.qdpp <- predict(cb.qdap,z)$class

## Warning in predict.qda(cb.qdap, z): variable names in ’newdata’ do not match
## those in ’object’

contour(x,y,matrix(cb.qdpp,m,n), levels=c(1.5, 2.5,3.5),
add=TRUE,d=FALSE,lty=1,lwd=2)
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ct.l<- table(predict(crab.lda, grouping=ct)$class, ct)
ct.l

## ct
## 1 2 3 4
## 1 50 5 0 0
## 2 0 45 0 0
## 3 0 0 47 0
## 4 0 0 3 50

error.rate.1<-sum(sum(ct.l[row(ct.l)!=col(ct.l)]))/length(ct)
error.rate.1

## [1] 0.04

ct.q<- table(predict(crab.qda, grouping=ct)$class, ct)
ct.q

## ct
## 1 2 3 4
## 1 48 4 0 0
## 2 2 46 0 0
## 3 0 0 48 0
## 4 0 0 2 50

error.rate.q<-sum(sum(ct.q[row(ct.q)!=col(ct.q)]))/length(ct)
error.rate.q

## [1] 0.04
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8 Fisher’s Linear Discriminent Analysis (two class problem)

The idea of Fisher LDA is to first reduce the dimension of the feature space (covariates) to only one dimension by
projecting the data onto a line such that along this new line classes are maximally separated from each other. In
other words, suppose we have a binary classification problem where we have access to p featuresX = (X1, . . . , Xp)
and the response is coded as Y ∈ {0, 1}. In PCA the idea was to search for directions in the data that have
largest variance and subsequently project the data onto it. In Fisher’s approach the class labels are also used to
perform some sort of supervised dimension reduction.

Figure 6: PCA versus Fisher’s dimension reduction method

In Fisher’s method, we are looking for a linear combination

U = w>X =
p∑
j=1

wjXj

with the best choice of w> = (w1, . . . , wp) such that U best separate the data. There are many linear combinations
of X that can be constructed. However, in classification, Fisher looked for a linear combination that maximizes
the separability of projected data points. The following figure considers a binary classification problem and
shows two different directions that one might want to project the training data points that are sitting in a two
dimensional space, i.e.,

Data = {(xi, yi), i = 1, 2, . . . , n} with xi = (x1i, x2i)

to form a new set of data points

Data∗ = {(ui, yi), i = 1, . . . , n},

such that the separation between data points

Data∗1 = {(ui, yi = 1), i = 1, . . . , n1}

and

Data∗0 = {(ui, yi = 0), i = 1, . . . , n0},

is maximized. See the following figure for a visual explanation of the idea of Fisher’s LDA.
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Figure 7: The Idea Behind Fisher’s Linear Dimension Reduction Technique for Classification

After we obtain such a one dimensional data points, then we perform classification with the one dimensional
covariate U instead of X. For example, for a Binary classification, Fisher’s classification rule is going to be

hF (x) =
{

1 w>x ≥ θ
0 Otherwise

, where θ is a chosen threshold.

In order to achieve the above described goal, one needs to define what we mean by separation of the groups and
how to find a good projection vector to give a good separation. Fisher defined a good separation the one that
makes groups (classes) to have means that are far apart relative to their spread. Let

E[U |Y = j] = E[w>X|Y = j] = w>µj ,

where
µj = E[X|Y = j].

Also, suppose Var(X) = Σ, and observe that

Var(U) = Var(w>X) = w>Σw.

Consider a binary classification with y ∈ {0, 1}. Fisher defined his LDA as a linear function w>X that maximizes
the following separation measure

J (w) = (E[U |Y = 0]− E[U |Y = 1])2

Var(Y )

= (w>µ0 −w>µ1)2

w>Σw

= w>(µ0 − µ1)(µ0 − µ1)>w
w>Σw

= (wδ)2

w>Σw , with δ = (µ0 − µ1).

Therefore, he was looking for a projection direction where examples from the same class are projected very close
to each other and at the same time the projected means are as farther apart as possible.

Note that the quantity J (w)arises in physics and is often called Rayleigh coefficient. In J (w) we have two
quantities that play important roles in constructing Fisher’s LDA. The first quantity is

w>(µo − µ1)(µ0 − µ1)>w,
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which measures the between class scatter. We also have w>Σw which is nothing more than within-class scatter.

In general these quantities are unknown and should be estimated using our training data. To this end, let

nj =
n∑
i=1

I(yi = j) = Number of data points from class j in our trating data.

Let X̄j be the sample mean vector of X’s for group j, and Sj be the sample covariance matrix in group j. Define

Ĵ (w) = w>SBw
w>SWw ,

where
SB = (x̄0 − x̄1)(x̄0 − x̄1)>,

contains the squares and cross products of the component differences between the means of the observations in
two different classes, and

SW = n0 − 1
n0 + n1 − 2S0 + n1 − 1

n0 + n1 − 2S1,

where we need (n0 +n1−2) > p or otherwise SW is singular and the usual inverse does not exists. An important
property to notice about the objective function Ĵ (w) is that it is invariant with respect to rescaling of w to
αw. Hence, as we are only interested in the direction to project the data, length is not important and we can
always choose w such that the denominator is simply w>SWw = 1 (note that this is a scaler itself). So, we can
transform the problem of maximizing Ĵ (w) into the following constrained optimization:

Maximize Ĵ (w) = w>SBw
w>SWw subject to w>SWw = 1,

which is equivalent to

Maximize w>SBw subject to w>SWw = 1.

This can be easily solved using the Lagrangian multiplier method by solving

L(w, λ) = w>SBw + λ(w>SWw− 1).

Solving this results in
SBw = λSww.

Note that, give that SW is positive definite and by multiplying both sides with S−1
W we have

S−1
W SBw = λw.

In other words, it looks like and eigenvalue equation if S−1
W SB was symmetric. This is indeed a generalized

eigenvalue problem that you can solve using any eigenvalue routine. As we showed in our notes for PCA, The
vector

w∗ = S−1
W (x̄0 − x̄1)

gives a solution to this problem and the vector

U = w>x = (x̄0 − x̄1)>S−1
W x,

is the resulting Fisher linear discriminant function.
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Remark 3. To better understand this, one can apply the following transformation using the fact that SB is
symmetric positive definite and can be written as S

1
2
BS

1
2
B. This can be done using the eigenvalue decomposition of

SB = PΛP> with PP> = P>P = I. So, we have

S−1
W SBw = λw =⇒ S

1
2
BS
−1
W S

1
2
B(S

1
2
Bw) = λ(S

1
2
Bw).

Let v = S
1
2
Bw then we get

S
1
2
BS
−1
W S

1
2
Bv = λv.

Now, this is a regular eigenvalue problem as S
1
2
BS
−1
W S

1
2
B is a symmetric, positive definite matrix. As we showed

earlier in our PCA note, one can find v∗ as the solution to the above equation using the eigenvalues and corre-
sponding eigenvectors of S

1
2
BS
−1
W S

1
2
B. Since we would like to maximize the objective function, we need to simply

take v∗ to be the eigenvector associated with the largest eigenvalue of S
1
2
BS
−1
W S

1
2
B. Using this, we get

w∗ = S
− 1

2
B v∗,

and accordingly
U = v∗>S−1

B x.

Given a training data set {(xi, yi), i = 1, . . . , n} we can easily find the Fisher’s sample linear discriminant function
as

U∗ = (x̄0 − x̄1)>S−1
W x.

we can employ it as a classification device. Let

Ū∗0 = w∗x̄0 and Ū∗1 = w∗x̄1

and define m be the midpoint between the projected means of the features for two classes in our data set as

m = 1
2(Ū∗0 + Ū∗1 ) = 1

2(x̄0 − x̄1)>S−1
W (x̄0 + x̄1).

Now, the classification rule based on Fisher’s method is defined as

hF (xj) =
{

1 U∗j > m

0 otherwise
.

The maximum vale of Ĵ (w) is given by

max
w

w>SBw
w>SWw = (x̄0 − x̄1)>S−1

W (x̄0 − x̄1) = D2,

where D2 is the sample squared distance. For two populations the maximum relative separation that can be
obtained by considering linear combinations of the features is equal to the distance D. Now, D2 can be used to
test whether the population class means µ1 and µ0 differ significantly or not and so a test for equality of the
population class means can be considered as a test for significance of the separation that can be achieved.

Suppose that the features X> = (X1, . . . , Xp) in the populations associated with Y = 0 and Y1 are distributed
according to multivariate normal distributions with common covariance matrix Σ. Then, a test for

H0 : µ0 = µ1 versus H1 = µ0 6= µ1

can be conducted using the following test statistic
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(
n0 + n1 − p− 1
(n0 + n1 − 2)p

)(
n0n1
n0 + n1

)
D2 ∼ Fp,n0+n1−p−1.

If H0 is rejected we conclude that the separation between the two classes is significant. Note that this does
not necessarily mean that classification is good. The efficacy of a classification procedure can be evaluated
independently of any test of separation. If separation is not significant, one should search for other useful
classification methods.

9 Logistic Regression For Classificastion

Consider the case where we have two classes Y = {1, 2} and let C denote a variable indicating class identity.
Suppose

P(X = x|C = j) = Np(µj ,Σ), j = 1, 2.

As we saw, using the Bayes rule

P(C = j|X = x) = P(X = x|C = j)P(C = j)
P(X = x) .

Plugging in the normal densitis we showed that we classify observations to class 1 if

P(C = 1|X = x) > P(C = 2|X = x),

or equivalenetly
log

(P(C = 1|X = x)
P(C = 2|X = x)

)
> 0.

After, simple claclualtions we can show that

log
(P(C = 1|X = x)
P(C = 2|X = x)

)
= log

π1
π2

1
(2π)p/2|Σ|1/2 exp{−1

2(x− µ1)>Σ−1(x− µ1)}
1

(2π)p/2|Σ|1/2 exp{−1
2(x− µ2)>Σ−1(x− µ2)}


= log(π1

π2
)− µ>1 Σ−1µ1

2 + µ>2 Σ−1µ2
2 + (µ1 − µ2)>Σ−2x

= β0 + β>1 x.

In other words, the log odds of class 1 versus 2 is a linear function of x. Estimating µ1, µ2, π1, π1 and Σ amounts
to estimating β0 and β1. One might ask, why don’t we directly estimate these coefficients? Do we really need to
assume normality for X associated with each class?

In general, there are two big branches of methods for classification. One is called generative modeling, the other
is called discriminative modeling. A generative model is a model for generating all values for a phenomenon, both
those that can be observed in the world and target variables that can only be computed from those observed. A
generative algorithm models how the data was generated in order to categorize a signal. Examples of genarative
models are LDA, QDA, Naive Bayes, and they often require strong modeling assumptions. These methods can
be used for multi-purpose tasks.

Generative models are used in machine learning for either modeling data directly (i.e., modeling observations
drawn from a probability density function), or as an intermediate step to forming a conditional probability
density function. Generative models are typically probabilistic, specifying a joint probability distribution over
observation and target (label) values. A conditional distribution can be formed from a generative model through
Bayes’ rule. One of the advantages of generative algorithms is that you can use P(x, y) to generate new data
similar to existing data.
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By contrast, discriminative models provide a model only for the target variable(s), generating them by analyzing
the observed variables. In simple terms, discriminative models infer outputs based on inputs, while generative
models generate both inputs and outputs, typically given some hidden parameters. Discriminative algorithms
generally give better performance in classification tasks. These models learn to perform better on the given task
and require weaker modeling assumptions. These models can easily overfit our data though!

Logistic regression for classification is a discriminative modeling approach, where we estimate the posterior
probabilities of classes given X directly without assuming the marginal distribution on X.

In logistic regression, we assume that

log
(P(C = 1|X = x)
P(C = 2|X = x)

)
= β0 + β>x,

for some unknown β0 ∈ R and β ∈ Rp which we will estimate directly.

Under such assumption and since P(C = 1|X = x) = 1− P(C = 2|X = x) one can easily see that

log
( P(C = 1|X = x)

1− P(C = 1|X = x)

)
= β0 + β>x⇐⇒ P(C = 1|X = x)

1− P(C = 1|X = x) = exp{β0 + β>x}

⇐⇒ P(C = 1|X = x) = exp{β0 + β>x}
1 + exp{β0 + β>x} .

Therefor we only need to assume that

P(C = 1|X = x) = s(β0 + β>x),

with s(u) = eu

1+eu , s : Rp −→ [0, 1 being the sigmond or logistic function.

logit <- function(x) {
return(1/(1+exp(-x)))

}
x <- seq(-10,10,0.5)
plot(x,logit(x), type="l")
abline(v=0,lty=2)
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Remark One can replace the logit function with other monotone functions the are bounded in [0, 1]. Common
example is using normal CDF or essentially the CDF of any continuous random variable for s(·).

The logistic function, or sigmoid function, has a real domain and a [0,1] range, which is appropriate to represent
probability at some adequate contexts.

Binary Logistic Regression is a special type of regression where binary response variable is related to a set of
explanatory variables, which can be discrete and/or continuous. The important point here to note is that in
linear regression, the expected values of the response variable are modeled based on combination of values taken
by the predictors. In logistic regression Probability or Odds of the response taking a particular value is modeled
based on combination of values taken by the predictors.

Logistic regression is applicable, for example, if:

• we want to model the probabilities of a response variable as a function of some explanatory variables.
• we want to perform descriptive discriminate analyses such as describing the differences between individuals

in separate groups as a function of explanatory variables.
• we want to predict probabilities that individuals fall into two categories of the binary response as a function

of some explanatory variables.
• we want to classify individuals into two categories based on explanatory variables.

Suppose we are given a sample (xi, Ci), i = 1, . . . , n. Assume that class labels are conditionally independent
given x1, . . . ,xn. For convenience, let

Yi =
{

1, Ci = 1
0, Ci = 2.

Let θ = (β0, β1) and suppose p(x; θ) = logit(Eθ(Y |x)) = logit(β0 + β>x) = eβ0+β>x

1+eβ0+β>x . Under this setting

Yi|xi ∼ Bin(1, p(xi; θ)) = Bin(1, eβ0+β>xi

1 + eβ0+β>xi
).

Now, the likelihood function of the sample is

L(θ) =
n∏
i=1

p(xi; θ)yi(1− p(xi; θ))1−yi

=
n∏
i=1

(
p(xi; θ)

1− p(xi; θ)

)yi
(1− p(xi; θ))

As p(xi;θ)
1−p(xi;θ) = eβ0+β>xi , the log-likelihood function is given by

l(β0, β1) =
n∑
i=1

{
yi(β0 + β>xi)− log(1 + eβ0+β>xi)

}
.

By taking the first derivatives with respect to β0 and β1 we get
∂l(β0,β1)
∂β0

= ∑n
i=1(yi − p(xi; θ)) = 0

∂l(β0,β1)
∂β1

= ∑n
i=1 xi(yi − p(xi; θ)) = 0

The first equation specifies that ∑n
i=1 yi = ∑n

i=1 p(xi; θ), that is the expected number of class ones matches the
observed number.

Note that one can simply write the score equations in the matrix notation as X>(Y − P) = 0, where Xn×2
is similar to the design matrix in the linear regression where first column in only ones, Yn×1 is the vector of
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response variables and Pn×1 is the vector of fitted probabilities with the ith element being p(xi; θ). To solve
these equations we use the Newton-Raphson algorithm, which requires the second derivative of Hessian matrix
given by

∂2l(θ)
∂θ∂θ>

= −X>WX,

where WN×N is a diagonal matrix with ith element p(xi; θ)(1 − p(xi; θ)). Starting with θold, a single Newton
update is

θnew = θold −
(
∂2l(θ)
∂θ∂θ>

)−1∣∣θ=θold
∂l(θ)
∂θ

∣∣
θ=θold (2)

= θold + (X>WX)−1X>(Y−P) (3)
= (X>WX)−1X>W(X>θold + W−1(Y−P)). (4)

Note that if we assume Zold = X>θold + Wold−1(Y−P), then one can easily write

θnew = (X>WoldX)−1X>WoldZold,

which is similar to the parameter estimates that one will get using the weighted least square methods. In the
literature Zold is called the adjusted response. These equations get solved repeatedly, since at each iteration P
changes by updating θ. This algorithm is refereed to as *iteratively least sqaures** or IRLS since each iteration
solves the weighted least squares problem

θnew ←− argminθ(Zold −Xθ)>Wold(Zold −Xθ).

One can easily use θ(0) = 0 as the initial value to star this numerical algorithm. In R, glm() function fits
generalized linear models, a general class of models that includes logistic regression if we pass family=binomial
as one of the parameters of the function. Here is how it works:

logistic.fit<- glm(Y~X, data=data.set, family=binomial)
summary(logistic.fit)
coef(logistic.fit)
logistic.probs<- predict(logistic.fit, type="response")
logistic.probs

Example (Crab data):
Consider the crab data set again. Suppose we are interested to predict if a crab belongs to class BM, or not,
that is, crab is a member of the second class defined by {OM,BF,OF}. To be able to visualize the result, we
use principal component (or reduced-rank LDA) to work with LD1 and LD2.

library(MASS)
data(crabs)

zz<-as.factor(paste(crabs[,1], crabs[,2], sep=""))

ct<-as.numeric(zz)

y<-as.numeric(ct==2)

crab.lda<-lda(crabs[, 4:8], grouping=ct)
crab.ldp<-predict(crab.lda)
plot(crab.ldp$x[,1:2], col=y+1, pch=y)
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Now, we can implement the logistic regression. However, to visualize the decision boundaries we first create a
grid of points and then use the logistic regression to predict class for each grid point and then use contour to
visualize the boundaries. We use both logistic regression that is linear and quadratic

par(mfrow=c(1, 2))

crab.new<-data.frame(Y=y, LD1= crab.ldp$x[,1], LD2= crab.ldp$x[,2])

logistic.fit<- glm(Y~., data=crab.new, family=binomial)

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

summary(logistic.fit)

##
## Call:
## glm(formula = Y ~ ., family = binomial, data = crab.new)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.71546 -0.04300 -0.00133 0.00002 2.71880
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -7.4706 1.8780 -3.978 6.95e-05 ***
## LD1 3.4470 0.8676 3.973 7.10e-05 ***
## LD2 2.9320 0.8332 3.519 0.000433 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
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## Null deviance: 224.934 on 199 degrees of freedom
## Residual deviance: 31.588 on 197 degrees of freedom
## AIC: 37.588
##
## Number of Fisher Scoring iterations: 10

coef(logistic.fit)

## (Intercept) LD1 LD2
## -7.470611 3.447040 2.932024

logistic.probs<- predict(logistic.fit, type="response")

x1 <- seq(-10,10,0.02)
x2 <- seq(-10,10,0.02)
z <- as.matrix(expand.grid(x1,x2))
grid.data<-data.frame(LD1=z[,1], LD2= z[,2])
m <- length(x1)
n <- length(x2)

cb.l.reg <- predict(logistic.fit, newdata=grid.data, type="response")

plot(crab.ldp$x[,1:2], col=y+1, pch=y)
contour(x1,x2,matrix(cb.l.reg,m,n), levels=c(0.5),
add=TRUE,d=FALSE,lty=1,lwd=1)

contour(x1,x2,matrix(cb.l.reg,m,n), levels=c(0.1, 0.25, 0.75, 0.1),
add=TRUE,d=FALSE,lty=2,lwd=2)

logistic.fit.2<- glm(Y~ (LD1+ LD2)^2, data=crab.new, family=binomial)
summary(logistic.fit.2)

##
## Call:
## glm(formula = Y ~ (LD1 + LD2)^2, family = binomial, data = crab.new)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.73674 -0.01663 -0.00484 0.00000 2.24864
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.3476 2.1077 -2.537 0.01117 *
## LD1 2.7889 0.9993 2.791 0.00526 **
## LD2 1.3352 1.0289 1.298 0.19437
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## LD1:LD2 0.9925 0.5241 1.894 0.05825 .
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 224.934 on 199 degrees of freedom
## Residual deviance: 25.059 on 196 degrees of freedom
## AIC: 33.059
##
## Number of Fisher Scoring iterations: 10

coef(logistic.fit.2)

## (Intercept) LD1 LD2 LD1:LD2
## -5.3476383 2.7888687 1.3352383 0.9925143

logistic.probs.2<- predict(logistic.fit.2, type="response")

cb.l.reg.2 <- predict(logistic.fit.2, newdata=grid.data, type="response")

plot(crab.ldp$x[,1:2], col=y+1, pch=y)
contour(x1,x2,matrix(cb.l.reg.2,m,n), levels=c(0.5),
add=TRUE,d=FALSE,lty=1,lwd=2)

contour(x1,x2,matrix(cb.l.reg.2,m,n), levels=c(0.1, 0.25, 0.75, 0.1),
add=TRUE,d=FALSE,lty=2,lwd=1)
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Example (Spam Emails):

This is a data set collected at Hewlett-Packard Labs, that classifies 4601 e-mails as spam or non-spam. Indeed
2788 e-mails classified as “nonspam” and 1813 classified as “spam”. In addition to this class label there are
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57 variables indicating the frequency of certain words and characters in the e-mail. A data frame with 4601
observations and 58 variables. This data set can be found in the package kernlab.

The first 48 variables contain the frequency of the variable name (e.g., business) in the e-mail. If the variable
name starts with num (e.g., num650) the it indicates the frequency of the corresponding number (e.g., 650). The
variables 49-54 indicate the frequency of the characters ‘;’, ‘(’, ‘[’, ‘!’, ‘$’, and ‘#’. The variables 55-57 contain
the average, longest and total run-length of capital letters. Variable 58 indicates the type of the mail and is
either “nonspam” or “spam”, i.e. unsolicited commercial e-mail.

The “spam” concept is diverse: advertisements for products/web sites, make money fast schemes, chain letters,
pornography. . . This collection of spam e-mails came from the collectors’ postmaster and individuals who had
filed spam. The collection of non-spam e-mails came from filed work and personal e-mails, and hence the word
‘george’ and the area code ‘650’ are indicators of non-spam. These are useful when constructing a personalized
spam filter. One would either have to blind such non-spam indicators or get a very wide collection of non-spam
to generate a general purpose spam filter. These data have been taken from the UCI Repository Of Machine
Learning Databases at http://www.ics.uci.edu/~mlearn/MLRepository.html

library(kernlab)
data(spam)
dim(spam)

## [1] 4601 58

spam[1:3, 1:8]

## make address all num3d our over remove internet
## 1 0.00 0.64 0.64 0 0.32 0.00 0.00 0.00
## 2 0.21 0.28 0.50 0 0.14 0.28 0.21 0.07
## 3 0.06 0.00 0.71 0 1.23 0.19 0.19 0.12

To be able to use logistic regression to predict spam/non-spam, suppose

Y =
{

1, Spam,
0, Non-Spam.

#Remember Last column indicates the type of the mail and is either "nonspam" or "spam"
table(spam[, ncol(spam)])

##
## nonspam spam
## 2788 1813

table(as.numeric(spam[, ncol(spam)])-1)

##
## 0 1
## 2788 1813
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Y<-as.numeric(spam[, ncol(spam)])-1
#All the other columns are features in our problem
X <- spam[ ,-ncol(spam)]

logistic.fit <- glm(Y ~ ., data=X,family=binomial)

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

summary(logistic.fit)

##
## Call:
## glm(formula = Y ~ ., family = binomial, data = X)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.127 -0.203 0.000 0.114 5.364
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.569e+00 1.420e-01 -11.044 < 2e-16 ***
## make -3.895e-01 2.315e-01 -1.683 0.092388 .
## address -1.458e-01 6.928e-02 -2.104 0.035362 *
## all 1.141e-01 1.103e-01 1.035 0.300759
## num3d 2.252e+00 1.507e+00 1.494 0.135168
## our 5.624e-01 1.018e-01 5.524 3.31e-08 ***
## over 8.830e-01 2.498e-01 3.534 0.000409 ***
## remove 2.279e+00 3.328e-01 6.846 7.57e-12 ***
## internet 5.696e-01 1.682e-01 3.387 0.000707 ***
## order 7.343e-01 2.849e-01 2.577 0.009958 **
## mail 1.275e-01 7.262e-02 1.755 0.079230 .
## receive -2.557e-01 2.979e-01 -0.858 0.390655
## will -1.383e-01 7.405e-02 -1.868 0.061773 .
## people -7.961e-02 2.303e-01 -0.346 0.729557
## report 1.447e-01 1.364e-01 1.061 0.288855
## addresses 1.236e+00 7.254e-01 1.704 0.088370 .
## free 1.039e+00 1.457e-01 7.128 1.01e-12 ***
## business 9.599e-01 2.251e-01 4.264 2.01e-05 ***
## email 1.203e-01 1.172e-01 1.027 0.304533
## you 8.131e-02 3.505e-02 2.320 0.020334 *
## credit 1.047e+00 5.383e-01 1.946 0.051675 .
## your 2.419e-01 5.243e-02 4.615 3.94e-06 ***
## font 2.013e-01 1.627e-01 1.238 0.215838
## num000 2.245e+00 4.714e-01 4.762 1.91e-06 ***
## money 4.264e-01 1.621e-01 2.630 0.008535 **
## hp -1.920e+00 3.128e-01 -6.139 8.31e-10 ***
## hpl -1.040e+00 4.396e-01 -2.366 0.017966 *
## george -1.177e+01 2.113e+00 -5.569 2.57e-08 ***
## num650 4.454e-01 1.991e-01 2.237 0.025255 *
## lab -2.486e+00 1.502e+00 -1.656 0.097744 .
## labs -3.299e-01 3.137e-01 -1.052 0.292972
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## telnet -1.702e-01 4.815e-01 -0.353 0.723742
## num857 2.549e+00 3.283e+00 0.776 0.437566
## data -7.383e-01 3.117e-01 -2.369 0.017842 *
## num415 6.679e-01 1.601e+00 0.417 0.676490
## num85 -2.055e+00 7.883e-01 -2.607 0.009124 **
## technology 9.237e-01 3.091e-01 2.989 0.002803 **
## num1999 4.651e-02 1.754e-01 0.265 0.790819
## parts -5.968e-01 4.232e-01 -1.410 0.158473
## pm -8.650e-01 3.828e-01 -2.260 0.023844 *
## direct -3.046e-01 3.636e-01 -0.838 0.402215
## cs -4.505e+01 2.660e+01 -1.694 0.090333 .
## meeting -2.689e+00 8.384e-01 -3.207 0.001342 **
## original -1.247e+00 8.064e-01 -1.547 0.121978
## project -1.573e+00 5.292e-01 -2.973 0.002953 **
## re -7.923e-01 1.556e-01 -5.091 3.56e-07 ***
## edu -1.459e+00 2.686e-01 -5.434 5.52e-08 ***
## table -2.326e+00 1.659e+00 -1.402 0.160958
## conference -4.016e+00 1.611e+00 -2.493 0.012672 *
## charSemicolon -1.291e+00 4.422e-01 -2.920 0.003503 **
## charRoundbracket -1.881e-01 2.494e-01 -0.754 0.450663
## charSquarebracket -6.574e-01 8.383e-01 -0.784 0.432914
## charExclamation 3.472e-01 8.926e-02 3.890 0.000100 ***
## charDollar 5.336e+00 7.064e-01 7.553 4.24e-14 ***
## charHash 2.403e+00 1.113e+00 2.159 0.030883 *
## capitalAve 1.199e-02 1.884e-02 0.636 0.524509
## capitalLong 9.118e-03 2.521e-03 3.618 0.000297 ***
## capitalTotal 8.437e-04 2.251e-04 3.747 0.000179 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6170.2 on 4600 degrees of freedom
## Residual deviance: 1815.8 on 4543 degrees of freedom
## AIC: 1931.8
##
## Number of Fisher Scoring iterations: 13

To see how good is this classification, we can proceed as follow:

prob.fit <- predict(logistic.fit,type="response")
predicted_spam <- as.numeric( prob.fit>0.5)
table(predicted_spam,Y)

## Y
## predicted_spam 0 1
## 0 2666 194
## 1 122 1619

predicted_spam <- as.numeric( prob.fit>0.99)
table(predicted_spam,Y)
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## Y
## predicted_spam 0 1
## 0 2776 1095
## 1 12 718

As we see out of 730 emails marked as spam, 12 were actually not spam. But this is training error. Let us use
some parts of our data for test and divide our data to training and test sets. To this end, we set aside 500 emails
as our test and remaining part for training our logistic regression model. We then calculate the test and training
error by using corresponding confusion tables.

set.seed(150)
n <- length(Y)
i <- sample.int(n, size = 500, replace = FALSE)
train <- (1:n)[-i]
test <- (1:n)[i]

logistic.fit.train <- glm(Y[train] ~ ., data=X[train,],family=binomial)

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

prob.fit.train <- predict(logistic.fit.train,newdata=X[train,],type="response")
prob.test <- predict(logistic.fit.train,newdata=X[test,],type="response")
predicted.spam.train <- as.numeric(prob.fit.train > 0.95)
predicted.spam.test <- as.numeric(prob.test > 0.95)
table(predicted.spam.train, Y[train])

##
## predicted.spam.train 0 1
## 0 2461 737
## 1 22 881

table(predicted.spam.test, Y[test])

##
## predicted.spam.test 0 1
## 0 302 81
## 1 3 114

10 LDA versus logistic regression (Generative versus Discriminative Learn-
ing)

As we explained earlier both LDA and logistc regression model the log odds as a linear function of x ∈ Rp. In
LDA

log
{P(C = 1|X = x)
P(C = 2|X = x)

}
= α0 + α>x

where α0 and α are based on πj , µj and Σ following a strong normality assumption for the distribution of feature
values associated with each class. In LDA, estimating α0 and α is easy.
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In logistic regression, however,
log

{P(C = 1|X = x)
P(C = 2|X = x)

}
= β0 + β>x,

where we estimate β0 and β directly based on the maximum likelihood approach. Generally speaking, logistic
regression is more flexible than LDA becasue it does not assume anything about the distribution of X. LDA
assumes that X is normally distributed withinh each class, so thatthe marginal distribution of X is a mixture of
homogenuous normal distribuions

X ∼
K∑
j=1

πjN(µj ,Σ).

One might easily argue that logistic regression is more robust to situations in which class conditional densities
are not normal. On the other side, if the true class conditional densities are normal, or close to it, LDA will be
more efficinet, meaning that for logistic regression to perform comparably it will need more data.
Comparing logistic regression with LDA is essentially comparing two important types of models is Statistical
learning, that is Discriminative versus Generative models.
Algorithms that try to learn P(y|x) directly (such as logistic regression), or algorithms that try to learn map-
pings directly from the space of inputs X to the labels {0, 1}, (such as the perceptron algorithm) are called
discriminative learning algorithms. In a generative onde develops algorithms that instead try to model P(x|y)
(and P(y)).
In LDA we estimate joint distribution of (X, Y ) by maximizing the full likelihood

n∏
i=1

P(xi, yi) =
n∏
i=1

P(xi|yi)×
n∏
i=1

P(yi),

where we assume given yi the feature values are distributed as a Gaussian distribution. Here Yi have Bernoulli
distributions.
In a logistic regression, we maximize the conditional likelihood ∏n

i=1 P(yi|xi) but we ignore the second them
P(xi). In other words, we look at the problem through teh following decomposition:

n∏
i=1

P(xi, yi) =
n∏
i=1

P(yi|xi)×
n∏
i=1

P(xi),

where we ignore the second part of the right hand side. Since classification only requires the knowledge of P(y|x)
we do not need to estimate the whole joint distribution. Logistic regression leaves teh marginal distribution P(x)
unspecified and relies on less parametric assumptions than LDA. This is an advantage of logistic regression over
LDA.
Example (Spam Email): We might be wondering how does logistic regression model perform compared with
LDA approach. Remember that LDA requires strong normality assumption!

library(MASS)
lda.result<- lda(x=X[train,],grouping=Y[train])
prob.lda <- predict(lda.result,newdata=X[test,])$posterior[,2]
predicted.spam.lda <- as.numeric(prob.lda > 0.95)
table(predicted.spam.test, Y[test])

##
## predicted.spam.test 0 1
## 0 302 81
## 1 3 114

40



table(predicted.spam.lda, Y[test])

##
## predicted.spam.lda 0 1
## 0 299 120
## 1 6 75

11 Multiclass Logistic Regression

Let the numbner of classes K ≥ 3. The logistic regression model arises from the desire to model the posterior
probabilities for K ≥ 3 classes via linear functions in X, while at the same time ensuring that they sum to one
and remain in [0, 1]. The model has the following form:

log
{ P(C = 1|X = x)
P(C = K|X = x)

}
= β10 + β>1 x

log
{ P(C = 2|X = x)
P(C = K|X = x)

}
= β20 + β>2 x

... =
...

log
{P(C = K − 1|X = x)

P(C = K|X = x)

}
= β(K−1)0 + β>K−1x.

The model is specified in terms of (K − 1) log-odds or logit transofmations (reflectcing that probabilities will
sum to one). It is worth notinng that the choice of the denominator in the above formulation is arbitrary and
one can replace that with theprobbaility of any other classes. One can easily show that

P(C = j|X = x) = eβj0+β>j x

1 +∑K−1
l=1 eβl0+β>l x

, j = 1, 2, . . . ,K − 1,

P(C = K|X = x) = 1
1 +∑K−1

l=1 eβl0+β>l x
,

which sum to one. For this formulation, let

β = (β10,β
>
1 , β20,β

>
2 , . . . , β(K−1)0,β

>
K−1)>D×1, D = (K − 1)(p+ 1),

be the unknown parameters of our multiclass logist regression formulation. Also, let βl = (βl0,β>l )>. Then

P(C = l|X = x) = Pl(x; β).

Now, based on a trainings sample (x1, C1), . . . , (xN , CN ) where Ci is the class label of the i-th observation such
that Ci ∈ {1, 2, . . . ,K}, we would like to estimate model parameters. Let Y be the concatenated indicator vectors
of dimention N × (K − 1), that is,

Y =


y1
y2
...

yK−1

 with yi =


I(C1 = i)
I(C2 = i)

...
I(CK−1 = i)

 , 1 ≤ i ≤ K − 1.
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Suppose also that P is the concatenated vector of fitted probabilities of dimension N(K − 1), that is

P =


P1
P2
...

PK−1

 with Pi =


Pi(x1; β)
Pi(x2; β)

...
Pi(xN ; β)

 , 1 ≤ i ≤ K − 1.

Similarly, let

X =


X 0 · · · 0
0 X · · · 0
...

... · · ·
...

0 0 · · · X


N(K−1)×(p+1)(K−1)

and

W =


W11 W12 · · · W1(K−1)
W21 W22 · · · W2(K−1)
...

... · · ·
...

W(K−1)1 W(K−1)2 · · · W(K−1)(K−1)


N(K−1)×N(K−1)

,

where each Wkm, 1 ≤ k,m ≤ K − 1 is an N ×N diagonal matrix such that

1. When k = m, Wmk has Pk(xi,βold)(1− Pk(xi,βold)) as its i-th diagonal elemnt.

2. When k 6= m, the i-th diagonal element in Wmk is −Pk(xi,βold)Pm(xi,βold).

Similar to the case with K = 2, we first calculate

∂l(β)
∂β

= X>(Y − P)

∂2l(β)
∂β∂β>

= −X>WX .

The formula for updating βnew for K = 2 holds for multiclass as well and we have

βnew = (X>WX )−1X>WZ,

where
Z = Xβold +W−1(Y − P),

or

βnew = βold + (X>WX )−1X>(Y − P).

For initialization one option is to take β = 0. Convergence is not guranteed but it is often the case.
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12 Naive Bayes Classifier

As we discussed earlier one approach to classification is through a generateive model where one need to specify
the conditional distribution of the feature variable x given the class lables y, that is P(x|y). In order to apply
the generative model, we need to either estimate estimate of specify the multivariate conditional distribution of
X. There are many methods to do this. One strategy is based on nonparametric methods using kernel density
estimation which makes very weak assumptions about the class-conditional distributions. Another approach is
to make strong parametric assumptions about the form of the class-conditional distributions, such as what we
did in LDA or QDA. In LDA for example, we assume the distribution of the features in each class is ellipsodial
such as multivariate normal which is the most familiar member of such distributions. In ellipsodial distributions
P(x|y) factorizes into terms which involve only pairs (Xi, Xj), so the other higher order interactions are assumed
to be zero and not to exist.
A Naive Bayes classifier is a simple probabilistic classifier based on applying Bayes’ theorem (from Bayesian
statistics) with even stronger assumptions that P(x|y) will factorize into a product of its univariate marginals,
that the components of X are independent, that is P(x|y) = ∏p

i=1 P(xi|y). Clearly this model is most likely to
be unrealistic for most problems. This approach which sometimes is called an _idiot’s$ Bayes methodology is
simply a very simplistic model where assumes that the underlying probability model would be an “independent
feature model”.
Naive Bayes technique is especially appropriate when teh dimension p of the feature space is high and density
estimation becomes very unattractive. By assuming the independency of the features give a class Y = j,
feastures in X are independent, and we have

fj(x) =
P∏
l=1

fjl(xl).

Now, the individual class-conditional marginal densities fjl can each be estimated separately using one-
dimesnional kernel density estimates. Note that when a component Xj of X is discrete, then an appropriate
histogran estimate can be used.
In simple terms, a naive Bayes classifier assumes that the presence (or absence) of a particular feature of a class is
unrelated to the presence (or absence) of any other feature. For example, a loan application might be approaved
if the applicant has a job, with age in the range 30 to 40 years old, and is not married. Even if these features
depend on each other or upon the existence of the other features, a naive Bayes classifier considers all of these
properties to independently contribute to the probability that a loan applicatin is approved. Depending on the
precise nature of the probability model, naive Bayes classifiers can be trained very efficiently in a supervised
learning setting. In many practical applications, parameter estimation for naive Bayes models uses the method
of maximum likelihood; in other words, one can work with the naive Bayes model without believing in Bayesian
probability or using any Bayesian methods.
In spite of their naive design and apparently over-simplified assumptions, naive Bayes classifiers have worked
quite well in many complex real-world situations. As we explain below, there are sound reasons for this: its
intrinsic simplicity means low variance in its probability estimates; although these will typically be biased, this
may not matter in classification situations as long as the rank order is preserved; in many situations the variables
undergone a selection process which tends to reduce their interdependencies. More over, since the model has teh
form of a product, by taking the logs it can be converted into a sum with the usual consequent computational
advantages.
Note that in work on supervised learning methods for classification it is standard ti refer to P(Y = j) = πj as
the class j prior probability as its gives the probability that an object belongs to class j prior to observing any
information about the object. Combining the prior with P(x|Y = j) = fj(x), as shown below, gives the posterior
probability, after observing x. This combination is done via the Bayes theorem and this is why the method is
called Bayes. Note however that after we formulated the problem using the Bayesian approach one does not
really need to stick with the Bayesian approach and can estimate the unknown parameters of class-conditional
distributions using standard approaches like maximum likelihood method, etc.
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12.1 Explaining Naive Bayes

Given features X = (X1, X2, . . . Xn) and a class label Y ∈ {1, 2, . . . ,K}, we wish to know

P(Y = j|X = x) = P(Y = j|X1 = x1, X2 = x2, . . . Xp = xp)

By Bayes’ Theorem:

P(Y = j|X = x) = P(Y = u)P(X = x|Y = j)
P(X = x)

∝ πjfj(x).

where πj = P(Y = j) and fj(x) is the class-conditional distribution of the features X in class j.

Naive Bayes ‘naively’ assumes that every feature Xr is conditionally independent of every other Xs (r 6= s) given
Y = j, i.e.:

p(Y = j|X = x) ∝ πj
p∏
i

fji(xi)

Now, one can use the MAP (Maximum Aposteriori) method to perform classification to assign an object with
observed features x to class j∗ if

j∗ = argmaxj
{
πj

p∏
i

fji(xi)
}
.

Note that in a classifiction problem when Y ∈ {1, . . . ,K}, by taking calss K as the base, one can take the logit
transform of P(Y = j|X) to get

log p(Y = j|X = x)
p(Y = K|X = x) = log πjfj(X)

πKfK(X)

= log πj
∏p
i fi(Xi)

πK
∏p
i fKi(Xi)

= log πj
πK

+
p∑
i=1

log fji(Xi)
fKi(Xi)

= αj +
p∑
i=1

gji(Xi),

which has the form of a generalized additive model.

##Why the independence assumption is not so absurd?

In spite of the fact that the assumption of independence is almost always wrong and the covariance matrices
are rarely diagonal, yet practical comparison of the Naive Bayes classification approach with more modern and
sophisticated classification approaches have shown that the Naive Bayes perform surprisingly well. There seem
to be very few studies which report poor performance for the independence Bayes model in comparison with
other methods.

One important reason that the Naive Bayes approach works well in many applications is that it requires fewer
parameters to be estimated than alternative methods which seek to model interactions in the individual class-
conditional x distributions. This is because models with fewer parameters will tend to have a lower variance for
the estimates of P(Y = j|x). Sometimes, the reduction in variance resulting from the relatively few parameters
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involved in the Naive Bayes model will be more than compensate for any increase in the bias, and one might
suspect that this often occurs in practice and is one explanation for the frequent good performance of the method.

In general, if simple classification is the aim, then bias may not matter that much. The best achievable classi-
fication results will be obtained provided that P̂(Y = j|x) > P̂(Y = i|x) whenever P(Y = j|x) > P(Y = i|x),
and the bias, even severe bias will not matter provided it is in the right direction. For classification accurate
probability estimates ate not required-a;; that need be preserved is the rank order.

In practice, the Naive Bayes method may beat flexible and highly parametric alternatives when small sample
sizes are involved because of the relatively low variance of its estimates of P(Y = j|x), and may in fact also
do well when we have large sample sizes because relatively large bias may not mater over most of the possible
patterns.

In many practical situations the variables will go under a variable selection process before being combined to yield
a classification rule. Typically, this process leads to the elimination of variables which are highly correlated with
those already included as such variables are less likely to contribute much additional information to the problem.
This means that, in real problems, there will be a tendency towards selecting weakly correlated variables,s o the
Naive Bayes approach maybe realistic model in such situations.

It might also be possible that the independence model will yield the optimal separating surface even if the
variables are correlated.

12.2 Naive Bayes Classification in R

Performing the Naive Bayes classification is simple in R. This can be done using:

• naiveBayes() that creates a classifier given observation data and the class for each observation. This is
in the e1071 package.

• predict() receives the classifier, some observations, and returns a vector with their predicted classes

The naiveBayes() assumes normal distributions for the features and estimates the unknown model parameters
using the MLE approach. You can also use NaiveBayes()' inklaR‘ package.

Example Naive Bayes classification for Iris Data.

data(iris) # load iris dataset
summary(iris)

## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
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library(e1071)
# create a classifier using naive bayes using the first 4 columns as the data,
# the last coloumn as the class for each observation
classifier<-naiveBayes(iris[,1:4], iris[,5], type="raw")

Use predict() that receives the classifier object plus some observations (iris[,-5] is the original data without its
class) and returns a sugested class for each observation.

predicted.classes <- predict(classifier, iris)
head(predicted.classes,n=12)

## [1] setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa
## [11] setosa setosa
## Levels: setosa versicolor virginica

Then the method table() presents a confusion matrix between the sugested classe vector with the real class
vector. In this case the classification was very good, but this is a biased result since we are using the same data
in the training and in the test sets

table(predicted.classes, iris[,5], dnn=list(’predicted’,’actual’))

## actual
## predicted setosa versicolor virginica
## setosa 50 0 0
## versicolor 0 47 3
## virginica 0 3 47

classifier$apriori / sum(classifier$apriori) # the prior distribution for the classes

## iris[, 5]
## setosa versicolor virginica
## 0.3333333 0.3333333 0.3333333

Since the predictor variables here are all continuous, the naive Bayes classifier generates three Gaussian (Normal)
distributions for each predictor variable: one for each value of the class variable Species. The first column is the
mean, the 2nd column is the standard deviation.

classifier$tables$Petal.Length

## Petal.Length
## iris[, 5] [,1] [,2]
## setosa 1.462 0.1736640
## versicolor 4.260 0.4699110
## virginica 5.552 0.5518947

Let’s plot these ones:
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plot(0:3, xlim=c(0.5,7), col="red", ylab="density",
type="n", xlab="Petal Length",
main="Petal length distribution for each species")

curve(dnorm(x, classifier$tables$Petal.Length[1,1],
classifier$tables$Petal.Length[1,2]),
add=TRUE, col="red")

curve(dnorm(x, classifier$tables$Petal.Length[2,1],
classifier$tables$Petal.Length[2,2]),
add=TRUE, col="blue")

curve(dnorm(x, classifier$tables$Petal.Length[3,1],
classifier$tables$Petal.Length[3,2]),
add=TRUE, col ="green")

legend("topright", c("setosa", "versicolor", "virginica"),
col = c("red","blue","green"), lwd=1)
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These values could also be accessed directly in the dataset. Say for Petal.Length:

mean(iris[iris$Species=="setosa",]$Petal.Length)

## [1] 1.462

sd(iris[iris$Species=="setosa",]$Petal.Length)

## [1] 0.173664

So, let’s say we want to find, without using the R function, all three possible values of P(Class lable|Features):
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observation <- data.frame(Sepal.Length = 5.0,
Sepal.Width = 3.2,
Petal.Length = 1.5,
Petal.Width = 0.3) # this observation lies within Setosa cluster

For setosa class:

P(C = setosa|observation) ∝ P(C = setosa)P(Sepal.Length = 5.0|C = setosa)P(Sepal.Width = 3.2|C = setosa)P(Petal.Length = 1.5|C = setosa)P(Petal.Width = 0.3|C = setosa)

A similar computation is needed for the other two classes. Let’s implement them:

iris.classes <- c("setosa","versicolor","virginica")
iris.attributes <- names(iris)[-5]

means <- rep(0,length(iris.attributes))
sds <- rep(0,length(iris.attributes))
densities <- rep(0,length(iris.attributes))

p.Cs <- c(0,0,0) # p(C=class)
p.Cs_observation <- c(0,0,0) # p(C=class | observation)

for (c in 1:length(iris.classes)) {
p.Cs[c] <- nrow(iris[iris$Species==iris.classes[c],]) / nrow(iris)

for(i in 1:length(iris.attributes)) {
means[i] <- sapply(iris[iris$Species==iris.classes[c],][i], mean)
sds[i] <- sapply(iris[iris$Species==iris.classes[c],][i], sd)
densities[i] <- dnorm(as.numeric(observation[i]), means[i], sds[i])

}

p.Cs_observation[c] <- p.Cs[c] * prod(densities) # the final value for each class
}

names(p.Cs_observation) <- c("setosa","versicolor","virginica")
p.Cs_observation

## setosa versicolor virginica
## 2.466810e+00 1.953732e-15 4.920209e-23

p.Cs_observation / sum(p.Cs_observation) # normalize

## setosa versicolor virginica
## 1.000000e+00 7.920075e-16 1.994563e-23

This means that our naive bayes would predict ‘setosa’ with VERY high likelihood.

With the use of naiveBayes() we get the same prediction:
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# type="raw" shows the probabilities
predict(classifier, observation, type="raw")

## setosa versicolor virginica
## [1,] 1 7.920075e-16 1.994563e-23
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